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ABSTRACT We analyzed a unique 51-year time series for a population of mule deer in the North Dakota
badlands, USA to examine the effects of seasonal weather on autumn recruitment. Winter weather recorded
prior to birth of fawns and weather conditions recorded during spring the previous year (lagged effect), but
not during spring or summer after birth, were related to observed patterns in autumn recruitment. When deer
density was low (approx. 1 deer/ km?) during the 1960s, fawn/female ratios were high ranging from 1.1 to 1.4
when minimum temperatures during the prior winter averaged —16° C and —8° C, respectively. Likewise,
during the 2000s, when deer density was high (approx. 3 deer/ km?), fawn/female ratios ranged from 0.6 to
0.9 when minimum daily temperatures during the previous winter were —16° C and —8° C, respectively.
Large-scale Pacific-based climatic indices (>2,000 km to the Pacific coast) were correlated with local weather
and helped explain variability in autumn recruitment. Higher values of the multivariate el nifio southern
oscillation and Pacific decadal oscillation were correlated with warmer and drier winters in the North Dakota
badlands, whereas the North Pacific Index was correlated with colder and snowy winters. The ability to
predict recruitment from local weather or from broad-scale climate indices (oscillations) provides greater
opportunities for conservation and management, such as adjusting harvest quotas prior to autumn harvest.
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Variation in climate is an important driver of environmental
stochasticity affecting fluctuations in ungulate populations
for temperate systems (Seéether 1997, Gaillard et al. 1998,
Mysterud et al. 2001). Seasonal fluctuations in climate can
affect recruitment, which is a key vital rate in population
dynamics (Seether 1997; Gaillard et al. 1998, 2000), with its
influence being most profound during the following 3
periods: 1) pre-birth (maternal) period, in which the
mother’s body condition is expected to affect the likelihood
of a successful pregnancy (e.g., Bishop et al. 2009), 2) birth to
weaning in summer (e.g., Hurley et al. 2011), and 3) autumn
to first offspring’s winter (e.g., Bergman et al. 2014).
Knowing recruitment rates is especially important for
managing hunted populations because license numbers often
must be set months before this information is available. The
ability to predict recruitment from seasonal weather has the
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potential to assist managers with adjusting harvest quotas
before the beginning of the hunting season.

Continental climates in the interiors of continents are
characterized by having large variances in temperature and
precipitation with extreme weather commonly recorded in
winter and summer. Variability in winter conditions has the
potential to influence population dynamics of herbivores
through an effect on mortality (Bartmann and Bowden 1984,
Seether et al. 1996, Mysterud et al. 2001, Hurley et al. 2011)
or body condition (Sether and Gravem 1988, Monteith et al.
2013). Harsh winters can aggravate the effects of competi-
tion for available food and negatively affect vital rates
(Forchhammer et al. 2001, Bishop et al. 2009, Hurley et al.
2011). In contrast, climate can have a major influence on the
quantity and/or quality of summer forage available to
herbivores based largely on rainfall and temperature (S@ther
1985, Post and Stenseth 1999, Hurley et al. 2011). Positive
effects of summer precipitation on ungulate survival and
reproduction can sometimes balance the negative effects of
harsh winter conditions (Grotan et al. 2008).

The mule deer, Odocotleus hemionus, is alarge herbivore that
occurs throughout western North America from Alaska and

1226

The Journal of Wildlife Management ¢ 79(8)



Western Canada through the Rocky Mountains and
Western Plains States of the United States south to the
Peninsula of Baja California and Northwestern Mexico. The
northern Great Plains are characterized by relatively cold and
long winters where deer are typically in negative energy
balance during winter because metabolic requirements
cannot be met by foraging alone (Wallmo 1981; Torbit
et al. 1985a,0; Parker et al. 1996; Bishop et al. 2009;
Monteith et al. 2014). The nutritional condition of mule
deer is, therefore, linked to seasonal availability of food
resources with seasonal limitations in food resources being a
major cause of mortality for fawns (Bishop et al. 2009,
Hurley et al. 2011, Forrester and Wittmer 2013). Mule deer
are highly selective feeders that depend on high-quality
forage (Wallmo 1981), and annual weather effects on the
progression of vegetative growth and quality are expected to
affect year-to-year mule deer population dynamics (Parker
et al. 2009, Forrester and Wittmer 2013).

Recent studies have demonstrated the predictive power of
broad-scale climate indices to predict recruitment in
ungulates (Stenseth et al. 2003; Hegel et al. 20104,4), and
it has been suggested that biological effects may be related
more strongly to global indices than to any single local
climate variable (Stenseth et al. 2003). If this is true, the use
of large-scale indices as proxies of local weather has the
potential to shed further light on our understanding of the
relationships between climate and population dynamics
(Stenseth et al. 2003). In western regions of Europe and
eastern North America, the North Atlantic Oscillation
(NAO) index predicts ungulate dynamics better than local
weather because the index integrates variation and inter-
actions from multiple variables across temporal and spatial
scales (Stenseth et al. 2003, Hallett et al. 2004, Stenseth and
Mysterud 2005). Relationships between local weather
patterns or broad climatic indices with ungulate population
dynamics ultimately depend on the spatial and temporal scale
of the process in question. Broad-scale climate indices are
likely better suited for large-scale studies with scattered and
discontinuous local weather data (assuming geographic
stationarity, which may not hold at large scales), whereas
local weather data (e.g., a single weather station) could be
enough to predict population dynamics for small-scale
studies. Large-scale indices also are retrospectively available
back to the early 1900s, freely available online, and can be the
only available weather proxies for those areas where local
weather stations and historical data are sparse. Whether the
Pacific-based climate fluctuations can influence local weather
in continental areas, such as the North American Great
Plains where the distance from the Pacific Ocean may exceed
2,000 km, is not well documented. Only a few studies have
used Pacific-based climate fluctuations to predict ungulate
dynamics in North America (Hebblewhite 2005; Hegel et al.
20104,6), and these studies were mainly limited to areas
closer to the Pacific coast (e.g., Marshal et al. 2002, Stenseth
et al. 2003). The multivariate el nino southern oscillation
index (MEI,; also known as el nino-la nina fluctuations) has
been correlated with terrestrial vertebrate population

dynamics in North America (Marshal et al. 2002). Recently,

2 additional Pacific-based indices have been implicated as
influencing population-growth rate, survival, fertility, and
other life-history characteristics in North America—the
North Pacific index (NPI; also known as North Pacific
Patterns NP) and the Pacific decadal oscillation (PDO;
Hebblewhite 2005, Morrison and Hik 2007, Hegel et al.
20104).

We related a 51-year time series of mule deer autumn
recruitment in the North Dakota badlands, which host a
population of mule deer that is one of the most distant
populations from the Pacific Ocean (Forrester and Wittmer
2013). We had 3 major hypotheses. First, we postulated that
variation in weather during fawn growth would affect mule
deer recruitment; therefore, we would see differences in
recruitment depending on the strength of seasonal weather
conditions. We expected that unfavorable weather conditions
recorded before (winter: Nov-Mar), during (spring: Apr—
May), and after (summer: Jun—Sep) the birth of fawns would
negatively affect fawn survival and, consequently, we would
observe low fawn recruitment in October. Specifically, we
expected harsh winter conditions to weaken female body
condition with consequences to their reproductive success
(Wallmo 1981; Torbitetal. 19854,4; Parker etal. 1996; Bishop
etal. 2009). Snowy and cold spring weather can debilitate body
condition of female mule deer at the end of the winter season
when fat reserves are reduced (Monteith et al. 2013, 2014).
During springs with cold weather, snow may persist for long
periods delaying green-up. If 75-80% of the fetal growth
occurs during the last trimester as in white-tailed deer
(Odocoileus virginianus, Armstrong 1950), then delay of green-
up could affect fawn recruitment. Hot and dry summers are
expected to reduce food quality and availability during weaning
and reduce fawn survival (Hurley et al. 2011).

Second, we hypothesized that adverse weather conditions
(e.g., harsh winters, snowy and cold springs, and/or hot and
dry summers) would affect female body condition and, thus,
recruitment in the following year. We predicted that adverse
weather conditions in year t-1 would result either in a
negative or a positive effect on recruitment in year t. A 1-year
lag effect of unfavorable weather conditions recorded in 1 or
more seasons is expected to diminish female body fat over the
next year and negatively affect conception and fawn
recruitment. Alternatively, adverse weather conditions in
year t-1 may cause fawn mortality and reduce female’s energy
expenditure (no weaning), leading to enhanced female body
condition that would actually improve survival of fawns in
year t.

Finally, we predicted that Pacific-based climate indices
(MEI, NPI, and PDO) would be correlated with local weather
in the Upper Great Plains. We tested the efficacy of these ocean
proxies in predicting mule deer recruitment compared to local
weather data. If this is true, managers can use ocean climate
proxies when local weather data are not available.

STUDY AREA

We performed our study in southwestern North Dakota.
The primary range of North Dakota’s mule deer population
(7,327 km?) is restricted to the badlands within the drainage
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system of the Little Missouri River (Fig. 1). Elevation ranged
from a low of 615 m above sea level in the Little Missouri
River bottoms to a high of 913 m at plateau tops.

This region encompasses abrupt changes in substrate,

clay-rich soils and softer sedimentary rocks have been widely
eroded by wind and water. They are characterized by steep
slopes, minimal vegetation, and high drainage density.
Native prairie is generally the main habitat on shallow slopes.
Pine forest (Ponderosa pine [Pinus ponderosa]) is a unique

slope, and soils. Badlands are a type of dry terrain where
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Figure 1. Map of the mule deer study area located along the Little Missouri River, North Dakota badlands, where surveys were flown from 1962 to 2012.
Location of the Medora weather station is indicated in the map (latitude: 46.96°; longitude: —103.50°; elevation: 686 m a.s.L.).
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habitat representing up to 35 km? of the southern half of the
badlands. Rocky Mountain juniper (Juniperus scopulorum)
dominates much of the rest of the badlands, occupying about
2,500 km?.

North Dakota’s climate is continental and is characterized
by large variances in temperature, both on a seasonal and
daily basis. Temperatures range from a mean daily high of
30.8° C in July (1962-2012: range 23.5-34.5° C) to a mean
daily low of —16.1°C in January (range —24.9°C to
—6.5°C). Snow cover typically occurs between November
and April. Snow cover is variable and often sparse, with cover
maintained throughout the winter only in shaded areas.
Pronghorn (Antilocapra americana), bighorn sheep (Owis
canadensis), and a small herd of elk (Cervus elaphus) share the
mule deer range. Coyote (Canis latrans), golden eagle (Aquila
chrysaetos), and more recently mountain lion (Puma concolor)
are the major natural predators of mule deer (Seabloom
2011).

Harvest management is regulated by the North Dakota
Game and Fish Department through harvest quota set on a
yearly basis (since late 1950s). The footprint of energy
development (particularly oil) has increased significantly in
the Dakota badlands over the last 30 years, especially in the
last decade with energy development growing rapidly
because of the use of fracking extraction techniques.

METHODS

Mule Deer Aerial Surveys

From 1962 to 2012, mule deer surveys were flown by staff of
the North Dakota Fish and Game Department during
October on as many as 26 (17 =5, mean &+ SD) survey units
within the study area (Fig. 1) to estimate deer recruitment
rates. The aerial survey design employed a census (100%
coverage per unit). A total of 54,744 mule deer were counted
by age and sex class over the monitored period (total males:
9,362, yearly mean + SD: 183 £ 115; total females: 22,699,
yearly mean £ SD: 445 +237; total fawns: 22,683, yearly
mean & SD: 444 4 187). We defined recruitment recorded in
October as the fawn/female ratio observed in the entire
region. From 1962 to 2012, the fawn/female ratio ranged
from 0.59 to 1.52 (mean 4= SD: 1.07 4-0.22).

During the same 51-year period, spring surveys were flown
during April to estimate deer density in the region. These
surveys were flown on as many as 26 survey units within the
study area (average number of survey units surveyed each
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year + SD: 19 + 6; deer density range: 0.89-3.56 deer/km?).
Deer density recorded in spring is expected to reflect density-
dependent effects on females during pregnancy and weaning;
effects on physical condition and fecundity (Stewart et al.
2005) and eventually on recruitment are recorded in the fall.
The spring mule deer population of the North Dakota
badlands has tripled in size (approx. 1 deer/km? in the 1960s
VS. approx. 3 deer/km? in 2000s), whereas fall recruitment
rate has almost halved (approx. 1.3 fawns per female in the
1960s vs. approx. 0.7 fawn per female in 2000s). This
suggests an overall density-dependent regulatory effect of
deer density on fall recruitment that we further investigated
in our recruitment models (see below). Our observational
study did not employ animal handling and adhered to
relevant regulations and guidelines regarding the ethics of
animal welfare of animals. Procedures were part of a study
plan approved by the North Dakota Game and Fish
Department, Bismarck, North Dakota, USA.

Local Weather Data and Pacific-Based Climate Indices
Local weather data, including daily precipitation (mm),
snowfall (mm), snow depth (mm), and maximum and
minimum temperatures (°C), were collected at the Medora
weather station (station id: Medora, ND, US; elevation
686.1m asl; latitude 46.966°% longitude —103.500°)
centrally located in the mule study area (Fig. 1). Data are
freely available online from the National Oceanic and
Atmospheric Administration (NOAA; www.noaa.gov).
Daily data can be accessed through a geographic information
system (GIS) viewer available at the following website:

http://gis.ncdc.noaa.gov/map/viewer/#app=cdo&etg=cdo&
theme=daily&layers=111&node=gis. Although we collected
fawn recruitment data in the period 1962-2012 (n=51), a
continuous time series in weather data were available at the
Medora station since 1956 (z=757). We used this extended
time series to describe local weather and its relationship with
Pacific-based climate indices.

Based on our knowledge of the ecology of mule deer and
available literature (Forrester and Wittmer 2013), we defined
3 seasons when weather conditions were expected to affect
female reproductive success and fawn survival, and in turn,
recruitment recorded during October (Fig. 2). Fall green-up
is not a significant phenomenon in this region (W. F. Jensen,
North Dakota Game and Fish Department, personal
communication). Radiocollared female mule deer were
observed to feed in brush complex types in the fall, with
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Figure 2. Diagram depicting seasonal intervals at which local weather and Pacific-based climate covariates were computed as predictors of mule deer fawn
recruitment in the North Dakota badlands, 1962-2012. We considered seasons before, during, and after the birth of fawns, as well as those seasons when
weather was expected to affect body condition of females on the long term (1-year lag).
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the tendency to use steeper slopes with a northerly aspect and
to avoid grasslands (Jensen 1988), suggesting that browse
and forbs compose the majority of the fall diet. Northerly
slopes, with slightly moister microclimates, support a higher
percentage of browse and forbs, and were among the last
areas for plants to enter senescence in fall (Jensen 1988).
Based on these observations, we did not consider fall as a
single season, and assigned fall months to either summer or
winter seasons consistent with their weather characteristics.
We included September in summer (average max. tempera-
ture: 24.1° C, range: 15.8-28.8° C); November can be harsh
(average snowfall: 105.3 mm, range: 0-376 mm, average min.
temperature: —7.4° C, range: —13.9°C to —2.6° C) and we
included it in winter (Fig. 2).

We estimated average local weather covariates for each
season, except for snow metrics, which we did not consider for
summer (Jun—Sep). We estimated a winter severity index
(WSI) using data from the Medora weather station and a well-
established protocol where we accumulated 1 point for each
day when mean ambient temperature was <—7°C, and we
accumulated an additional point for each day in which snow
depthwas >35 cm (Brinkman etal. 2005). We computed WSI
for winter (Nov—Mar) and spring (Apr—May) of each year.

We considered the following 3 Pacific-based climate
indices: 1) PDO (data were available at

http://www.estl.noaa.gov/psd/data/climateindices/list/); ~ 2)
NPI (available at https://climatedataguide.ucar.edu/climate-
data/north-pacific-np-index-trenberth-and-hurrell-monthly-
and-winter); and 3) MEI (available from http://www.estl.noaa.
gov/psd/enso/mei/#data). E1 Nino occurs when MEI values are
high, whereas La Nina occurs when MEI values are low. We
averaged all monthly Pacific-based indices seasonally (see Fig. 2
for season classification).

Data Analyses

Our primary objective was to relate local weather and Pacific-
based indices (same set of data available for the North American
continent) to fall fawn recruitment in the North Dakota
badlands. We modeled the time series of fawn recruitment
collected from 1962 to 2012 using as a response variable of the
total number of fawns counted in the entire study area divided by
total number of females counted in the same region each year.
We did not attempt to test for the effect of local variation of
weather conditions on fawn recruitment across different survey
units of the study area (Fig. 1) because multiple weather stations
with consistent reporting were not available in the area and the
weather within this region was generally similar.

We modeled fall recruitment (hereafter referred to as
recruitment) as a function of spring mule deer density
(hereafter referred to as deer density) and 1 or more seasonal
weather covariates (x;) using generalized additive models

(Wood 2006, 2011) withance o2.
Recruitment; = a + f'; (Deerdensity;) + f,(x) + ... +¢ (1)

where g; ~ N(0,02).

In additive modeling, we used a smoothing function to
link the response variable recruitment to deer density

/f1(Deer density,) and the seasonal weather covariates f5(x;)
to allow for non-linear relationships (Wood 2006). In
practice, the additive model fits a smoothing curve through
the data. The amount of smoothing was not fixed to a
present value; hence, we used cross-validation that
automatically determines the optimal amount of smooth-
ing (Wood 2006). We inspected normality of residuals
using quantile—quantile plots. We screened independence
of residuals using the autocorrelation function (Venables
and Ripley 2002).

Year of study was collinear with spring deer density
(Pearson correlation: 7, = 0.83, P < 0.001); therefore, they
could not be included in the same models. Models
including year as a predictor (not shown in this paper)
were characterized by lower uncertainty compared to
models including deer density as a predictor, with no
temporal autocorrelation issues. However, deer density
recorded in spring is expected to be related to food
availability to females during pregnancy and weaning, with
the potential to affect fall recruitment via density-
dependent regulatory effect (Stewart et al. 2005). Thus,
we used mule deer density as a predictor in our models
because it was better justified biologically. This choice
introduced a 1-year time lag autocorrelation in the
residuals of our models, as expected because next year’s
population size is directly a consequence of this year’s
population size. This autocorrelation does not bias the
estimate of the coefficient for density, but it causes an
underestimate of the variance, that is, increasing the
likelihood of a Type I error. This did not affect model-
selection because deer density was included in all models to
account for the density-dependent regulatory effect
(Bergman et al. 2015). However, we avoided making
any inferences on the P-values recorded for the effect of
deer density on deer recruitment. To select the best
seasonal predictors of fawn recruitment among local
weather covariates, which usually are collinear (|7,| >0.7)
within the same season, we fitted a series of generalized
additive models (Equation (1)) with only 1 weather
covariate. We ranked model support using the Akaike’s
Information Criterion corrected for small sample size
(AIC,). We selected the covariate included in the models
with the lowest AIC, values as the best local weather
predictors in fawn recruitment.

Pacific-based climate indices are metrics that oscillate over
time and are strictly inter-related among each other.
Specifically, MEI and PDO values are positively correlated
with each other, and negatively correlated with NPI values
(Table S1). We fitted Principal Component Analyses
(PCAs; Crawley 2012) on the 3 Pacific-based climate
indices to compute principal components of the first axis
(PC1s) derived for each season (winter, spring, and summer)
and PCls for 1-year lags of weather variables for each season
(Figs. S1, S2, and S3). Following the same procedure used to
select best local seasonal weather predictors, we fitted a series
of generalized additive models (Equation (1)) with only 1
climate covariate, and we selected Pacific-based climate
indices or PCI covariates included in the models with the
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lowest AIC, values as the best climate predictors in fawn
recruitment. Next, we fitted 2 a priori sets of generalized
additive models using the top 1) local weather covariates
from each season and 2) Pacific-based climate indices from
each season as predictors of fawn recruitment. We included
seasonal covariates that reflected weather and climate
conditions for the current year (t) and the previous year
(t-1). A priori models were alternative and plausible
(biologically motivated) models supported by our knowledge
of the species and previous literature (Table S2). Pacific-
based climate indices can be collinear (|r,| >0.7) among
different seasons, even among consecutive years. We did not
include collinear first principal components (including 1-year
lags) in the same model.

For all sets of models, we performed model selection using
AIC. (Burnham and Anderson 2002). Because there was not
enough support for a single best model, we reported a
confidence set of models (w; > 0.90; Burnham et al. 2011).
We used model averaging to calculate the relative importance
of each explanatory variable as a sum of Akaike weights
across all models in the confidence set that contained that
variable (Burnham and Anderson 2002). We included
interactions between deer density and weather recorded in
winter,, that is, when cumulative food limitations imposed by
deer density and snow cover are expected to interact in
affecting female body condition and eventually recruitment.
We analyzed relationships between observed and predicted
recruitment in top-ranked models with the Pearson
correlation coefficients to quantify how well the models fit
the data.

We analyzed linear relationships between local weather
covariates, Pacific-based climate indices, and first principal
components PC1s using the Pearson’s correlation coefficient.
We performed all analyses in R 3.0.2 (R Development Core
Team 2011).

RESULTS

Weather and Climate Predictors of Fawn Recruitment

Based on the AIC, of generalized additive models (Equation
(1)) fitted with only 1 weather covariate, the best local
weather predictors of fawn recruitment were the average
minimum temperature recorded in the previous winter

(AIC,=—-32.07), and the average maximum temperature
recorded during spring (AIC,=-30.46) and summer
(AIC,= —30.42). These temperatures were highly correlated
with the other weather covariates recorded in the same
season (Table 1). Therefore, we used average minimum
temperature as our winter covariate (for both winter, and
winter, 1) and average maximum temperature as our spring
and summer covariates (for year, and year, ;) when modeling
fawn recruitment.

Pacific-based climate indices were strongly correlated
(Table S1). Multivariate ENSO index (MEI) was positively
correlated with PDO index, whereas MEI and PDO were
negatively correlated with NPI (Table S1). First principal
components (PC1s) resulting from the Principal Component
analysis carried out on the 3 Pacific-based climate indices
explained approximately 70% of variance in winter and
spring (Figs. S1 and S2), and approximately 55% of variance
during summer (Fig. S$3). MEI and PDO always had positive
loadings on the first principal component, whereas NPl had a
negative loading on it. Principal components PC1s generally
performed better than single Pacific-based climate indices in
predicting fawn recruitment based on AIC, values of
generalized additive models (Equation (1)) fitted with
only 1 climate covariate (winter PC1 AIC, = —34.22, spring
PC1 AIC,= —28.32, summer PC1 AIC,= —27.16). There-
fore, we used seasonal PC1s as candidate predictors (for both
year, and year, 1) in fawn recruitment modeling.

Relationships of Pacific-Based Climate and Local
Weather Covariates

During winter (Nov—Mar), PDO and PC1 values were
positively correlated with warmer weather in the North
Dakota badlands (Table 2). The NPI index values were
strongly and positively correlated with colder winters with
more snow. Pacific-based indices were not correlated with
winter severity index (WSI) values (Table 2). During spring
(Apr-May), higher MEI and PC1 values were observed
during drier weather in the North Dakota badlands (Table
3). The PDO and PC1 values were positively correlated with
warmer weather, and PDO values were negatively correlated
with the seasonal index harshness (winter severity index
computed over the period Apr-May; Table 3). During
summer (Jun-Sep), correlations between Pacific-based

Table 1. Correlation coefficients between the best seasonal local weather predictors of mule deer fawn recruitment (rows: average min. temperature recorded
in winter, and max. temperature recorded in spring and summer) and the other local weather covariates recorded during the same seasons. Data were collected
by the Medora weather station (1956-2012), North Dakota, centrally located in the mule deer study area. Among local weather covariates, best seasonal
predictors of fawn recruitment (rows) were those that were included in the generalized additive model with the lowest Akaike’s Information Criterion

corrected for small sample size (AIC,) values.

Average Average Average
min. max. Average Average snow

temperature temperature precipitation snowfall depth
Season Covariate °C) °C) (mm) (mm) (mm) WSI*
Winter Average min. temperature °C 0.79* —0.28* —0.41* —0.58" —0.75*
Spring Average max. temperature °C 0.52* —0.45* —0.46* —0.48* —0.44*
Summer  Average max. temperature °C 0.44* —0.45* b b b
* Winter severity index (computed over the period Nov—Mar for winters, Apr—May for springs).
® Snowfall never occurs from July to August and was a rare event in June and September.
* Indicates significant Pearson correlations (P < 0.05).
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Table 2. Correlation coefficients between Pacific-based climate predictors (rows) and local weather covariates (columns) during winter. Local weather data
were collected by the Medora weather station, North Dakota (1956-2012), centrally located in the mule deer study area.

Average Average Average

min. max. Average Average snow
Climate temperature temperature precipitation snowfall depth
index® °C) ({)) (mm) (mm) (mm) wsIb
MEI 0.24 0.19 —0.14 —0.14 —-0.05 —0.01
NPI —0.38* —0.35* 0.24 0.30" 0.14 0.10
PDO 0.29* 0.14 0 0 —0.09 —0.07
PC1 0.36" 0.27* -0.15 -0.17 -0.11 —0.07

* MEI, multivariate ENSO index; NPI, North Pacific index; PDO, Pacific decadal oscillation; PC1, first principal component resulting from the principal
component analysis carried out on MEI, NPI, and PDO Pacific-based climatic indices.

Winter severity index (computed over the period Nov—Mar).
* Indicates significant Pearson correlations (P < 0.05).

indices and local weather covariates were weaker compared to
other seasons. The MEI and PC1 values were correlated with
precipitation (Table 4).

Modeling Fawn Recruitment From Local Weather and
Pacific-Based Climate Indices

Based on relative importance in the confidence set of
generalized additive models (w;>0.90) of the effect of
seasonal local weather on fawn recruitment (Table 5), deer
density, winter, average minimum temperature, and spring,_q
average maximum temperature had the strongest relation-
ship with mule deer fawn recruitment. Mule deer density
recorded in spring was inversely related to fawn recruitment
recorded in fall (Fig. 3a).

Predicted recruitment recorded during the 1960s (low mule
deer density, approx. 1 deer/ km?) ranged from approximately
1.1 fawn per female, when temperature recorded during the
winter prior to the birth of fawns was lower than —16° C, to
1.4 fawns per female when winter temperatures were at least
4°C warmer (Fig. 3b). Recruitment recorded during the
early 2000s (high mule deer density, approx. 3.2 deer/km?)
ranged from 0.6 to 0.9 fawns per female when temperatures
recorded during the winter prior to the birth of fawns were
—16°C and —8°C, respectively. This suggests a weak
interaction between winter harshness and deer density that
was retained by the second-ranked model (AAIC,=2.40),
but not by the top-ranked one. The lowest recruitment rates
were predicted when cold winters prior to the birth of fawns
(winter,) and cold springs 1 year earlier (spring.;) were
recorded (Fig. 4). Weather conditions recorded in the other

seasons (year, and year, ;) had little importance on the
confidence set of models and weak effects on fawn
recruitment (Table 5).

The AIC, of the most parsimonious model using Pacific-
based climate predictors (AIC, = —34.22; Table 6) was more
than 10 AIC, points larger than the top-ranked model using
local weather covariates (AIC,= —45.36; Table 5). This
indicates that local weather is a better predictor of deer
recruitment compared to Pacific-based climate. However, at
more than 2,000km from the Pacific coast, large-scale
Pacific-based climatic indices remarkably explained a
substantial proportion of the variability in recruitment.
The Pacific-based climate index that had the strongest
relationship with mule deer fawn recruitment was the one
recorded during the winter prior to the birth of fawns
(winter, first principal component PC1; Table 6). Similar to
when using local weather predictors, deer density was related
to recruitment, and its interaction with winter harshness was
included in the second ranked model (AAIC,=1.06). Fawn
recruitment in October increased when April deer density
decreased (Fig. 5), as well as when winter, PC1 increased.
Increased winter, PC1 corresponds to higher MEI and PDO
and lower NPI values, that is, warmer, drier, and less snowy
winters. Pacific-climate indices recorded in the other seasons
(Table 6) had little importance on the confidence set of
models and weak effects on fawn recruitment.

Autocorrelation plots for the residuals of top-ranked
models revealed 1-year time lag autocorrelation in the
residuals of our models (Fig. S4). We inspected relationships
between observed and predicted mule deer recruitment in

Table 3. Correlation coefficients between Pacific-based climate predictors (rows) and local weather covariates (columns) during spring. Local weather data
were collected by the Medora weather station, North Dakota (1956-2012), centrally located in the mule deer study area.

Average Average Average

min. max. Average Average snow
Climate temperature temperature precipitation snowfall depth
index" °C) °C) (mm) (mm) (mm) wsIb
MEI 0.15 0.22 —0.27* —0.03 —0.06 —0.11
NPI —0.12 —0.18 0.25 0.13 —0.05 0.05
PDO 0.22 0.26" —0.25 0.06 0.05 —0.27*
PC1 0.20 0.27* -0.317 —0.04 0.01 -0.17

* MEI, multivariate ENSO index; NPI, North Pacific index; PDO, Pacific decadal oscillation; PC1, first principal component resulting from the principal
component analysis carried out on MEI, NPI, and PDO Pacific-based climatic indices.

® Winter severity index (computed over the period Apr-May).
* Indicates significant Pearson correlations (P < 0.05).
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Table 4. Correlation coefficients between Pacific-based climate predictors
(rows) and local weather covariates (columns) during summer. Local
weather data were collected by the Medora weather station, North Dakota
(1956-2012), centrally located in the mule deer study area.

Average Average
min. max. Average

Climate temperature temperature precipitation
index® (°C) (°C) (mm)
MEI 0.18 -0.11 0.29*
NPI —-0.16 —-0.02 0.01
PDO 0.19 —0.02 0.22
PC1 0.23 -0.07 0.27*

*MEI, multivariate ENSO index; NPI, North Pacific index; PDO, Pacific
decadal oscillation; PC1, first principal component resulting from the
principal component analysis carried out on MEI, NPI, and PDO
Pacific-based climatic indices.

* Indicates significant Pearson correlations (P < 0.05).

top-ranked models to verify goodness of fit in our models
(Fig. S5). Generalized additive models fit the data well with
predicted and observed recruitment rates highly correlated
(model fit with local weather data: r,=0.83, P<0.001;
model fit with Pacific-based climate: 7, =0.71, P<0.001).

DISCUSSION

We found evidence for a density-dependent regulatory effect
of fawn recruitment in the North Dakota badlands, with deer
density recorded during female pregnancy being inversely
related to fall recruitment. Density-dependent effects are
expected to be manifested principally through intraspecific
competition, body condition, and fecundity of females
(Stewart et al. 2005, Bergman et al. 2015). Using deer density
to control for the density-dependent effect, we were able to
examine how seasonal weather relates to fawn recruitment.
Our first hypothesis related to the differential effects of
weather in different seasons on mule deer recruitment was
supported. We found that winter weather recorded prior to
the birth of fawns (winter,) was a factor related to autumn

fawn/female ratios. Weather conditions recorded during
(spring,) and after (summer,) birth were found to have no
significant effect. Our second hypothesis relating to the
time-lag effects of weather on recruitment also was
supported, with conditions recorded during the spring 1
year prior to births (spring,.q) likely affecting female body
conditions and eventually recruitment.

Surprisingly, Pacific-based climate indices were correlated
with local weather even in this area of the Great Plains
>2,000km distant from the ocean, supporting our third
hypothesis. Finally, Pacific-based climate had the ability to
predict recruitment, even though its predictive ability was
lower compared with local weather data. This suggests that
broad-scale indices may provide a good alternative to
predicting fawn recruitment when local weather data are not
available.

Mule deer occur across much of North America, ranging
from the northern Yukon Territory of Canada to central
Mexico and from the 100th Meridian west to the Pacific
coast (Forrester and Wittmer 2013). The species occupies a
wide range of habitats including prairie in the east,
woodlands and all forest types of the Rocky Mountains in
the northwest, and the desert scrub in the southwest
(Wallmo 1981). Mule deer habitats generally are character-
ized by early stages of plant succession, mixed plant
communities and available browse (Baker et al. 1979,
Carpenter et al. 1979, Wallmo 1981). Forage species may
suffer from summer drought with consequences on fawn
survival at least in the southern and western areas of mule
deer range (Hurley et al. 2011). However, according to our
results, summer drought does not seem to be a limiting factor
for mule deer in the North Dakota badlands. Recent research
has suggested that high winter snowfall can lower winter
fawn survival across almost the entire mule deer range
(Forrester and Wittmer 2013), with little evidence that
summer precipitation affects survival in the following year;
this also may suggest that increases in summer forage

Table 5. Confidence set of generalized additive models (cumulative weight: w; > 0.90) predicting the effect of seasonal local weather on mule deer fawn
recruitment in the North Dakota badlands (1962-2012) obtained from a starting set of 35 a priori models (including a null model: AIC,=—4.37,
AAIC,=41.0). Our representative covariate for winter was average minimum temperature and our representative covariate for spring and summer was
average maximum temperature. We investigated seasonal weather covariates from the current year (t) and the previous year (t-1). Models are ordered
according to the corrected Akaike’s information criterion (AIC,) with the most parsimonious model at the top. We also report degrees of freedom (df); AIC,
difference between a given model 7 and the top ranked model (AAIC,); Akaike weights (w;); evidence ratio (ER), that is, a measure of how much more likely

the best model is than model 7; and adjusted R-squared (adj R).

Model structure® df AIC, AAIC, w; ER adj R?
Spring,_1* + winter," + deer density* 9.3 —45.36 0 0.56 1 0.64
Spring,.1* + (winter, x deer density)* 9.5 —42.96 2.40 0.17 33 0.63
Winter,.; + spring..;* + winter,” + deer density* 10.6 —42.39 2.97 0.13 4.4 0.64
Winter,; + spring,.;* + winter,* + summer, + deer density* 11.2 —41.48 3.88 0.08 7.0 0.64
Spring,.1* + summer, + deer density* 7.4 —41.03 4.33 0.06 8.7 0.58
* Relative variable importance (2 w,):

Mule deer density: 0.83

Average min. temperature (winter,): 0.77

Average min. temperature (winter,) X mule deer density: 0.17

Average max. temperature (spring,1): 1

Average min. temperature (winter,.1): 0.21

Average max. temperature (summer,): 0.14
* Significance of smooth terms (P < 0.05).
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Figure 3. a) Mule deer density (deer/km?) and fawn recruitment (fawn/
female ratio) recorded by aerial surveys in the North Dakota badlands from
1962 to 2012. Deer density estimates were recorded during spring (Apr)
surveys, and recruitment was estimated during fall (Oct) surveys. b) Effect of
mule deer density (deer/km?, x-axis) and average minimum temperature
recorded during winter, (i.e., during female pregnancy prior to the birth of
fawns; °C, y-axis) on fall fawn recruitment as predicted by the most-
supported generalized additive model. Model terms not shown in the plot
were kept to mean values.

following high snowfall years do not compensate for lower
survival in high snowfall winters. Our models indicate that
there is no detectible relationship between summer
conditions and fall fawn recruitment, even when considering
1-year time lags. North Dakota badlands host one of the
mule deer populations most distant from the Pacific Ocean,
where long and harsh winters appear to be the most limiting
season in the mule deer biological cycle; at least concerning
fawn recruitment. Harsh winter conditions likely weaken
female body condition in this region prior to birth.
Reproductive performance of females can be strongly
influenced by their physical condition and nutritional status
during gestation, with potential consequences on post-
partum survival of fawns (e.g., reduced fawn physical
condition at birth, low quality of mothers’ milk), as has
been suggested for other North American populations
(Torbit et al. 19855, Parker et al. 1996, Bishop et al. 2009,
Monteith et al. 2013, Monteith et al. 2014). Additionally, we
documented a clear relationship between weather during the
spring 1 year before the birth and fawn recruitment. Harsh
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Figure 4. Effects of local weather covariates recorded during spring,.q (i.e.,
1 year prior to the birth of fawns) and winter, (i.., during female pregnancy)
on fall mule deer fawn recruitment (fawn/female ratio) in the North Dakota
badlands (1962-2012) as predicted by the most supported generalized
additive model. Model terms not shown in the plot were kept to mean values.
Gray surfaces are standard errors.

springs (time lag year t-1) could be critical because they may
make the winter much longer and further weaken females
that face the next winter (the one just prior to birth) with
reduced body condition. Poor nutrition or body condition in
ungulates can negatively affect hypothalamic—pituitary
function (Schillo 1992, Wade et al. 1996), inhibit ovulation
(Tanaka et al. 2003), reduce pregnancy rates (Folk and
Klimstra 1991, Tanaka et al. 2003, Bishop et al. 2009),
increase probability of terminating pregnancy after breeding
(Sosa et al. 2004), and reduce production of offspring
(Adamczewski et al. 1998, Russell et al. 1998, Cook et al.
2004).

Interestingly, we did not find negative effects of 2 harsh
winters in a row on fawn recruitment. Most likely, the first of
2 harsh winters (year t-1) negatively affects fawn recruit-
ment, as confirmed by our analyses. This suggests
compensation, for example, females that did not give birth
to a fawn or lost it because of weakened body condition after
the first adverse winter (year t-1), supposedly reduced their
energy expenditure (no weaning) and were in a better
condition to face the second harsh winter (year t). This
compensation could be the reason why our analyses did not
detect any cumulative effect of 2 consecutive adverse winters.
In white-tailed deer, when does lost their fawns shortly
before or after parturition, they quickly regained top physical
condition and exhibited higher subsequent fecundity than
does suckling young (Verme 1969, Mansell 1974).

Temperatures captured more variability in fawn recruit-
ment than other metrics of local weather, such as snowfall or
even more comprehensive covariates like the winter severity
index. For subpopulations spread over such a large area, as is
the case in our study area, 1 single weather metric (e.g., snow
depth) derived from a single local weather station may not
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Table 6. Confidence set of generalized additive models (cumulative weight: w; > 0.90) predicting the effect of seasonal Pacific-based climate on mule deer
fawn recruitment in the North Dakota badlands (1962-2012) obtained from a starting set of 29 a priori models (including a null model: AIC,=—4.37,
AAIC,=29.86). Our representative covariate for all seasons was PC1, which was generated by a principal components analysis fitted on Pacific-based indices
(multivariate ENSO index, North Pacific index, and Pacific decadal oscillation). We investigated seasonal weather covariates from the current year (t) and the
previous year (t-1). Models are ordered according to the corrected Akaike’s information criterion (AIC,) with the most parsimonious model at the top. We
also report degrees of freedom (df); AIC, difference between a given model 7 and the top ranked model (AAIC,); Akaike weights (w;); evidence ratio (ER),
that is, a measure of how much more likely the best model is than model 4 and adjusted R-squared (adj R?).

Model structure® df AIC, AAIC, w; ER adj R?
Winter,* 4 deer density* 4.6 —34.22 0 0.20 1 0.48
(Winter, x deer density)* 4.0 -33.16 1.06 0.12 1.7 0.48
Winter,* + spring, + deer density* 5.4 —33.02 1.20 0.11 1.8 0.48
Spring, + (winter, X deer density)* 54 —32.75 1.48 0.10 2.1 0.47
Winter,; + winter,” + deer density* 5.7 —32.38 1.84 0.08 2.5 0.48
Winter,* + summer, + deer density* 6.0 —32.34 1.88 0.08 2.5 0.48
Spring,.; + winter," + deer density* 5.7 —32.08 2.14 0.07 2.9 0.47
Summer, + (winter, X deer density)* 5.6 —31.69 2.53 0.06 3.5 0.47
Winter,.; + winter," + spring, + deer density* 6.6 —31.05 3.18 0.04 4.9 0.48
Winter,.; + (winter, X deer density)* 5.0 —30.76 3.47 0.04 5.6 0.45
Spring,.1 + (winter, x deer density)* 5.0 -30.70 3.52 0.03 5.8 0.45
Winter,.; + spring, + (winter, X deer density)* 6.0 —30.34 3.88 0.03 6.9 0.46
Winter,.; + winter," + summer, + deer density* 7.1 —30.34 3.88 0.03 6.9 0.48
Winter,; + winter," + summer, + spring, + deer density" 8.0 —29.41 4.81 0.01 11.1 0.48

* Relative variable importance (2 w;):
Mule deer density: 0.63
PC1 (winter,): 0.63
PC1 (winter,) X mule deer density: 0.37
PC1 (spring,): 0.30
PC1 (winter,;): 0.23
PC1 (summer,): 0.18
PC1 (spring,1): 0.10
* Significance of smooth terms (P < 0.05).

Figure 5. Effects of first principal component (PC1) computed for winter,
(i.e., during female pregnancy) and mule deer density (deer/km?) on fall fawn
recruitment (fawn/female ratio) in the North Dakota badlands (1962-2012),
as predicted by the most supported generalized additive model. Winter PC1
was generated by a principal components analysis fitted on winter Pacific-
based indices (MEI, multivariate ENSO index; NPI, North Pacific index;
PDO, Pacific decadal oscillation). Higher values of winter PC1 correspond
to higher MEI and PDO values and lower NPI values, that is, warmer and
drier winters. Gray surfaces are standard errors.

represent conditions experienced by all individuals. Temper-
ature gradients are less spatially variable than snow depth or
precipitation, which could be locally high at the weather
station but not representative of the entire area and
influenced by other parameters such as wind and freezing
and thawing. Temperature gradients are better predictors of
fawn recruitment, as also suggested by previous research
(Melis et al. 2009; Hegel et al. 20104,4). Bartmann and
Bowden (1984) also found snow depth to have little
predictive value for estimating winter mule deer mortality in
Colorado, attributing this to the tempering effect of deer
moving to snow-free southern slopes where forage was
available. Indeed, little is known on the potential role of
behavior in buffering mule deer against the effects of climate
on recruitment, as suggested for other ungulate species
(Long et al. 2014).

Even at more than 2,000 km from the Pacific coast, large-
scale climatic indices were correlated with local weather.
Pacific-based climate indices confirmed a similar scenario
depicted by local weather covariates, with winter prior to
birth being the limiting season that affects fawn recruitment.
Although models built with ocean proxies were worse than
those built with regional weather covariates, ocean proxies
were able to carry the information of winter harshness that
was related to mule deer recruitment in the North Dakota
badlands. This opens new research and management
opportunities for continental areas such as the Great Plains,
where the predictive power of large-scale climate indices has
been neglected because of the distance from the Pacific
Ocean. Large-scale climate indices are characterized by
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cycles that can be predicted in advance by statistical models
and can be taken into account in management plans. For
example, periodic declines in carrying capacity should be
anticipated by increased harvest quotas to take advantage of
the interaction between density dependence and seasonal
mortality (Boyce et al. 1999, Xu et al. 2005).

A typical situation in sparsely populated areas is that none or
only 1 weather station may be available (Adams 2005). Pacific-
based climate indices certainly open new opportunities for
modeling population dynamics. On a broader perspective,
large-scale climate indices can be used to anticipate the effect of
weather on dynamics for those populations for which survey
data are available from long-term wildlife monitoring
programs (e.g., starting from the 1900s, such as in regions
of US, Canada, and Europe; for Europe, see Apollonio et al.
2010), but cannot be matched with missing or incomplete local
weather data. PDO metrics, for instance, are available since the
year 1900. The study of the ecological effects of climate change
has become a popular research topic (Both et al. 2004,
Parmesan 2006), and the use of Pacific-based climate indices as
predictors of climate has the potential to shed light on our
understanding of the effects of climate change on large
herbivores ecological patterns (Stenseth et al. 2003), including
distribution and population dynamics.

Our results indicate the use of local weather data rather
than ocean proxies is preferable when predicting vital rates
such as deer recruitment in continental areas, especially in
small-scale studies where regional weather stations can
provide high-quality weather data. However, the use of
ocean proxies certainly can be a new tool for managers when
dealing with limited availability of local weather data. The
North Dakota badlands host a continental population of
mule deer that is the one of the most distant from the Pacific
Ocean. Ocean proxies are expected to be increasingly more
correlated with local weather moving from the Dakotas to
the Pacific coast (see for instance strongly correlated Pacific-
based indices with local weather in the Canadian Rockies at
approx. 800km from the Pacific coast; Hebblewhite 2005)
and they can be considered a new tool accessible to managers
in continental areas.

MANAGEMENT IMPLICATIONS

Being able to predict in advance the fluctuations in
recruitment using local weather and/or broad-scale climate
indices opens new opportunities and provides a tool for
setting harvest quotas. For instance, in our mule deer study
population, the North Dakota Game and Fish Department
has well-established hunting units and regulates numbers of
permits in each unit annually. The numbers of permits are
governed by the previous years” harvest data, spring and fall
aerial surveys, and estimated annual recruitment. Quotas for
hunter harvest could be adjusted based on winter harshness
(e.g., average minimum temperature recorded from Nov to
Mar) and deer density. Such predictions could be formulated
further in advance considering the degree of predictability of
broad-scale climate indices. Managers might decide, for
instance, to increase the number of female tags available to
hunters in anticipation of a particularly harsh winter

predicted to hit the deer population. We stress that
conservation and management agencies should be aware of
the importance of being proactive in management, of the
value of maintaining long-term dataset, and the need to
continually re-evaluate harvest plans, switching from a fixed
to an adaptive harvest management system. Time series can
be re-evaluated annually after updating with new data to
anticipate future population dynamics prior to making
decisions on harvest management.
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