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Abstract

Spatial heterogeneity inherent in the environment influences how animals respond to their
surroundings, especially as it relates to the variability of their food resotteesogeneityn
specific elements of vegetation, suchtesspatial pattern @ single plant speciesan be
defined based on patch distribution atmindancePattern®f plant food resources at the
landscapescale willbe particularly important fowvide-rangingwil dlife specieshatperceive
surrounding heterogeneity at a broad spatial ex@arada buffaloberry
(Shepherdiaanadensisis a shrub common to montane and boreal forests of western North
America with its fruit being @rimaryseasonal resource fbirds andnammalsincluding

grizzly bears(rsus arcto}. The objectives of this study wefiest to relatethe spatial
heterogeneityf buffaloberry shrubto forest canopy patternendsecondo examine how
buffaloberry shrutheterogeneityffectedgrizzly bear space use (resource selectioming the
fruiting seasonForest canopy and buffaloberry shrub presence were meastinedieldwith
line-intercept sampling along terk2n transectsstratified todifferent levels of canopy cover
and variabity in canopyin the Rocky Mountain foothills of wesentral Alberta, Canada.
Effects of canopy on buffaloberry in the understory were sibapendent, witlshrub presence
negatively related to evergreen canopy cover and positively related to decidoopyg cover.
Thefractal dimensions of botbverstory forestanopy andinderstorybuffaloberryshrubswere
estimated using begounting methodt evaluatespatial heterogeneityased orpatch
distribution and abundancBuffaloberrypatchheterogeneity was positively related to evergreen
canopy heterogeneity, bwtasunrelated to that adeciduous canopy. Thdemonstrates that
evergreen canopy measurements can be used to sdalffalpberry patch distribution and

abundance acros$ise lardscapeat a spatial extent relevant to bedsizzly bear GPS radio



telemetry datdéor the daytime periotvere used to estimate resource selection function (RSF)
modelsusingpredicted abundance and fruit productadrbuffaloberryat both the patchand
landscapescalesMeasures of surroundirghrubabundanceand variability in fruit densityvere
the most important factsexplaining habitat selection during the fruiting period. In particular,
variability in surroundindruit density was strongly and positively relateds&dectionof
buffaloberry patches by grizzly beassiggesting the presence of traafts between maximizing
use of resource patches and the use of complementary resources or cover for day bedding
Clarifying the landscape heterogeneityfodd resource and how thisnfluences animal habitat
use carprovide insight into how consumegsource interactions may be altered in the future

andcanthus inform wildlife conservation and management.
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Chapter 1: General introduction

The spatial heterogeneity inherent in €mvironment strongly influences how animals interact

with and respond to their surroundings (Wiens and Mil®89). The study of ecological
heterogeneity necessitates attention to the effects of scale, as it involves the variance in a system
property in space (Kotliar and Wieri990). However, the appearance of spatial patterns, and

thus our conclusions, arecthted by the experimental scale at which they are examined (Wiens
1989). This scalelependence emphasizes the difficulty associated with quantifying

environmental heterogeneity, although efforts to do so are necessary before the implications of

this varability for organisms can be better understood.

A primary aspect oénvironmental heterogeneity that affects animal behaviour is the spatial
variability of their food resources (Heinrich979), which often relates directly or indirectly to
plants. Vegetadn heterogeneity can be defined based on the distribution and abundance of
individual species (Kotliar and Wienk990). These properties may also be applied to the food
resources plants provide, such as fruit, the heterogeneity of which does not ngezpsarthat
of the plant species itself. Fractal analysisrie approach for examining spatial patterns that is
practical for describing natural irregularifylandelbrof 1982), such as the arrangement of
vegetation patches within a landscape (&gchie et al.1994). It is particularly useful for
addressing thehallenge of spatial sca{@llen and Starr1982; Li, 2000)relevant toevaluating
vegetation heterogenejtgnd carrepresentnulti-scale patternwith a single metric, the fractal
dimenson (Mandelbrgt1982). As fieldbased methods for estimating fractal dimensions of plant
species measure both the distribution and abundance of patches (RitchiE9843).the value

can be considered an indicator of spatial heterogeneity (RRO1€)

The identification of relationships between plant species heterogeneity and broader landscape
characteristics that are more easily assessed with remote sensing information, such as forest
canopy cover, complements field sampling techniques and datasErce, determining

linkages between spatial patterns of understory plants and canopy overstory patterns could
facilitate the development of models to estimate understory plant heterogeneity across larger

spatial scales (extents).



Knowledge of plant sgries heterogeneity is especially valuable for those that are key food
resources for animal species at risk, as information about food distributi@andance can
inform conservation and management of vulnerable wildlife. Grizzly bEassi§ arcto} are
recognized as a threatened species in Alberta (ARSID) with food resource availability
influencing their behaviour and use of habitats (Jonkel and CAWai; Nielsen et 312004,
2010). Buffaloberry $hepherdia canadensis a native shrub common to the understory of
boreal and temperate montane forests (Stringer and La Roi, 1970; La Roi and Hnatiuk, 1980)
that is one of the primary fruit resources used by grizzly bears in Alberta (Hamer and Herrero
1987; Hamer et gl1991; Munro et a].2006). It is particularly crucial during the summer and
early fall (McLellan and Hovey1995; Munro et a).2006), when bears enter hyperphagia and
increase food consumption (Nelsd®80) with shrub occurrence known to significantlydace
bear foraging activity (Nielsen et 22003, 2010). Although buffaloberry occurrence and fruit
density models have been previously developed for the area and used to represent seasonal
habitat for grizzly bears (Nielsen et,&003, 2010, 2016), merspecific details of the spatial
heterogeneity of this resource have not been investigated. Grizzly bears-oenteak Alberta
occupy expansive annual home ranges of hundreds of skjlaretres (Graham and Stenhouse
2014). Landscapkevel estimatesf buffaloberry heterogeneity would therefore prove to be

valuable in better understanding their utilization of this seasonal resource.

Grizzly bearuse of buffaloberry resources in the region has been examined in the context of

resource selection functigRSF) models that have incorporated buffaloberry variables measured

at the patcHevel (Nielsen et al2003, 2010). However, grizzly bears likely perceive their
surroundings at | arger spatial scal esl9eB)orresp
Heterogeneity of buffaloberry within a broader area should therefore be considered as it likely

affects foraging behaviour and selection (Searle 2@06).

The spatial heterogeneity of buffaloberry and its importance for grizzly bears is resttiyur

well understood. This topic will be explored in the following two thesis chapters.

In Chapter 2, | examine across spatial scales the total and individual effects of evergreen and
deciduous forest canopy cover on buffaloberry shrub presence, agdraptal analysis to
estimate relationships between the fractal dimensions of the canopy and buffaloberry using box

counting methods.



In Chapter 3, | use a resource selection approach to evaluate the role of laieissdped
resource heterogeneity gmnizzly bear selection for buffaloberry fruit patches both prior to and
during the fruit ripening period by comparing a set of foraging hypotheses. Fhipgming
period serves as a control and enables foraging patterns during fruit ripening to beedompar

with those observed during a timeframe when fruit resources are not available.



Chapter 2: Evaluating the gatial heterogeneity ofbuffaloberry shrubs in
relation to forest canopy patterns using fractal analysis

1.0Introduction

Spatialheterogeneity is both a product (Urban et¥87) and determinant of ecological
processes and thus an important landscape property (Kolasa andlB@llpLi and Reynolds

1995). Spatial heterogeneity is, however, difficult to quarfiyens, 1989] evin, 1992)as it is
scaledependenfMandelbrot, 198; Wiens, 1989Allen and Hoekstra, 1992for vegetation,

spatial heterogeneity can be defined as the variance in the horizontal distribution of plants
determined by both the dispersion of patches and contrast betwgtatian types or species
(Kotliar and Wiens, 1990NVegetation patterns are collectively shaped by a series of interactions
between climate, terrain, soil, biotic factors and disturbance prod®8ats 1947 Whittaker,

1975 Levin, 1978 Sousa, 198/

Spatial patterns in forests are affected by both natural and angergpalisturbances, such as
timber harvesting, which modify the size and arrangement of tree pgkche&lin and Forman,
1987) Disturbance thefere creates variability in the horizontal structure of the canopy and is an
important factor affecting vegetation heterogen@itatt, 1947 Levin, 1978 Sousa, 1984)

Variation in the foretscanopy also exerts strong influences on understory microhabitats through
regulation of key resources such as liglennings et al., 199@)nd soil nutrient¢Beatty, 1984
Boettcher and Kalisz, 199@)hich control plant growth and survivdussell, 1961Smith,

1982) Canopy omposition alters resource availabilitacdonald and Fenniak, 2007)
suggesting that these Acanopy effectso differ
1984;Pelletier et al., 199Kembel and Dale, 200¢)otentially due to factors such as the lower
light transmission of evergreen canop(e®ffers and Stadt]994 Constabel ad Lieffers,

1996)

These resoureeelated interactions between canopy and understory produce linkages between
their respective spatial patterfigeatty, 1984Palmer, 1988Spies and Franklin, 198%linka et
al., 1996)and, indeed, these vary between evergraed deciduouslominated standd&embel



and Dale, 2006)in particular, the presence of evergreen conifers has been identified as a key
determinant of understory patteriieatty, 1984Berger and Puettmann, 2Q@venning and

Skov, 2002)the heterogeneity of which may increase with conifer abund&eeebel and

Dale, 2006) Spatial relationships between the canopy and understory may also be more evident

in coniferdominated stand¥embel and Dale, 2006)

The strength and direction of canopy effects on understory plant presence andwategiory
spatial réationships are scaldependen(Tewksbury and Lloyd, 20QKembel and Dale, 2006)

as the local influence of an individual tree on nearby understory pagistinct from the

collective effect of numerous trees over a larger @feaksbury and Lloyd, 2001However,

despit the importance of muicale analyses for better understanding spatial dynamics between

the canopy and understory, assessments across scales are uncommon.

Fractal analysis is an inherently mesdtiale approach for characterizing spatial patterns
(Mandelbrot 1982)and is paitularly useful for addressing issues of s¢@lken and Starr,
1982 Li, 2000) Rarely, however, has this been applied to spatial overstatgrstory
relationships (but seBrosofske et al.1999for a multiscale wavelet approach that related
understory plant patterns to ecosystem typleish incorporated overstory composition and
structure). Unlike exact fractals that are perfes#ifsimilar, natural fractals demonstrate
statistical selsimilarity across a limited range of spatial scgBsrrough, 1981Frontier, 198y
which may amount to several orders of magnitiMing, 1992 Milne, 1997) A scaling law
will apply within the range of selimilarity, and this typ of relationship has been recognized as
a tool for clarifying the organization of complex ecological systems given itsisvaleance
that can facilitate extrapolatigBrown et al, 2002)Fractal properties of a pattern can be
evaluated by calculating the fractal dimensiby {hich summarizes complexity and space
filling ability with one succinct notinteger valugMandelbrof 1982) A natural pattern is
fractatlike over the spatial range where a scaling law holds, characterized by a linear
relationship on a logpg plot (Brown et al, 2002) which can be identified through the
calculation ofD (Sugihara and May, 1990For a material distributed across a fdimensional
plane, such as an aerial view of a landscBpsill range between 0 and 2; a value of O is a
single point, 1 suggests high seifmilarity and clustering, and 2 denotes a complete random

distribution(Milne, 1997) D is affected by the amount and dispersion of a material across the



landscap€Olff and Ritdie, 2002)and indicates pattern homogend®almer 1988)
Homogeneity can be defined as the randomness of a distribution, which incelases a
approaches gPalmer, 1988Li and Reynolds, 1995and thus a loweD signifies greater
heterogeneity. The value Bfmay change with experimental scéfalmer 1988)and is not an
absolute measure of heterogeneity. However, examining measures of forest canopy and
understory cover at the same sctcilitates a relative comparison of their patt€¢Kenkel and
Walker, 1996)Fractal analyses of forest vegetation have mainly sedestributes such as
patch shapé&rummel et al., 1987Rex and Malanson, 199Mladenoff et al., 19933nd canopy
height(Drake and Weishampel, 200Barker and Russ, 200/ther than heterogeneity as
defined here. Studies often rely on remote sendiig to calculat® and utilize methods such
as perimetearea ratiogKrummel et al., 1987Rex and Malanson, 199Mladenoff et al.,
1993) semivariogramgParker and Russ, 2004)nd multifractal¢Drake and Weishampel,
2000)

Box-countingis one approach for calculating fractal dimensiernsley, 1988Milne, 1991

Milne, 1997)that estimate® based on the number of grid segments occupied by a material
across different spatial scales. When adapted fodonensional vegetation transe{®tchie et

al., 1994) boxcounting data represent both patch size and diswibuthich are pertinent

aspects of horizontal vegetation heterogeneity. Field measurements are straightforward, can be
obtained at a fine resolution (e.g. centimeters or decimeters), and allow for other attributes, such
as species composition, to be caetwhich are difficult to measure accurately with remote
sensing data.

Most applications of boxounting to research on vegetation patterns have focused on individual
plant structuréMorse et al., 19855unnarsson, 199Escos et al., 199'Alados et al., 1998)

rather than landscape patterns in plant structure or the interdotionsen different landscape
elements. Studies that have employed-bownting to analyze plant distributions have also
generally focused on species in AHonested ecosystems such as spatial patterns in crested
wheatgrassAgropyron desertorujrn grasslads or big sagebrusiftemisia tridentatain

shrub landg¢Ritchie et al, 1994) Rarely has this tecique been used in the more vertically
complex systems of forests. Evaluating relationships between canopy and understory

heterogeneity using fractal metrics suctibasan provide important insights into the spatial



dynamics of forest vegetation strata @dles beyond the individual forest stand (i.e., landscape
level).In this study, we compare the spatial patterns of the overstory forest with the spatial
patterns of a common shrub in a montane forested ecosystem in the foothills of Alberta, Canada.
Canadauffaloberry Ehepherdia canaden}is a shadéntolerant(Humbert et al., 2007)

dioecious shrub that occurs in boreal and temperate montane {&teistger and La Roi, 1970

La Roi and Hnatiuk, 198@cross Canada and the northern United S{Mess 1983) Effects

of canopy on buffaloberriyave been previously examined, but the focus has been on fruit
production(Hamer, P96, Nielsen et al., 2003, and the individual components of evergreen

and deciduous canopy have not been evaluated separately.

Ourfocus here iso describe spatial patterns and relationships iomaand buffaloberry to
evaluate caelationships in presence and heterogeneity across multiple spatial scales and
landscape forest cover gradients. Specifically, we have two main objectives: first, to determine
the total and individual effects of evergnesnd deciduous canopy cover on buffaloberry
presence across multiple orders of scale, and second, to use fragtalintirng to assess

whether there are doeterogeneity relationships between canopy cover (evergreen vs.

deciduous) and buffaloberry patshe

We hypothesize that, given differences in resource regulation, evergreen and deciduous canopy
will demonstrate distinct effects on the presence and patterns of buffaloberry that vary with

spatial scale due to changes in resource availability in spacewirglthis, we hypothesize that
greater canopy heterogeneity (lovi@rwill be associated with greater buffaloberry

heterogeneity, because the patterns in the overstory forest should structure those of understory
plants. We expect, however, that evergregmopy will have a stronger effect on buffaloberry
presence and heterogeneity than deciduous canopy due to lower light conditions under evergreen

trees that would limit buffaloberry growth.

2.0 Methods

2.1Study area

The study area covers 2,389 %af maraged, conifedominated forest southeast of the town of
Hi nton (53A2464106N, 117A33686500 W) and north
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W) in the Rocky Mountain foothills of wesentral Alberta (Figur@.1). The climate is moist

and cool (Achuff1994), with higher elevation in the west that declines in the east across a range
from 950 m to 2500 m. Land cover types include evergreen, deciduous, and mixed forest
consisting of dominant tree species such as lodgepoleRimeas(contorty, white sprage Picea
glaucg, and asperRopulus tremuloidgsalong with open bogs, meadows, and previously
harvested cutblock@chuff, 1994;Udell et al, 2013) Active resource extraction and

development by the forestry, mining, and energy (oil and gas) industries results in variation in
the degree of anthropogenic disturbance.

2.2 Site selection

Field sites were selected using LiDARrived canopy cover dataQ052007) from Coops et al.
(2016) scaled at a resolution of 25 Tinese data were useddtratify the landscape for sampling
into three ordinal canopy cover categories defined by the proportion of the forest floor covered
by tree crowngJennings et 811999} low (0-40% cover), moderate (45%), and high (>55%).
Each canopy cover category was subsequently divided into low, meahdimgh canopy

variability levelsbased on the standard deviation of canopy cevigich was quantile binned in

a Geographic Informatio8ystem (GIS; ArcMap version 10.2.1; ESRI, 2014)détermine

transect lengtlior obtaining boxcounting measurements in the field, neighbourhood analyses
were performed to examine changes in average
size(scale) was sequentially increas@tiis process indicated that a transect length of 2 km
would both represent a range of canopy conditionseaatlesampling efficiency in the field.

Ten transect replicates were sited in total using a stratdigdiom ampling designReplicates

were balanced among canopy variability levels with three placed in each of tarddwvigh

canopy cover categories and four in the modaravercategoryMean distance among selected
transects was 19.9 km with a maximum andimum distance of 41.6 km and 4 km,

respectively.

2.3Field methods
The £n 2km transectsvere establishenh the fieldbased on randomized starting locations and
orientations Dominant forest canopy species and land cover type were noted for each.transec

This included upland forest, wet forest, and cutblocks at various stages of regeneration. Line



intercept was used to measure the length of buffaloberry shrub intercepts along the transect tape
using a 0.04m resolution. This resulted in 200,000 recordedments (binary presenabsence
conditions) per transect (Figure2p Intercept length was evaluated per shrub and recorded as

the maximum extent of an individual with no differentiation between female and male shrubs.

Canopy intercepts for trees >IrBheight were also estimated, but at ard.tesolution (20,000
canopy segments per transect) (Figu, Zince it was impractical to achieve the same

resolution (0.01 m) of buffaloberry shrubs given typical heights of trees above transects. Canopy
intercepts were classified as evergreen or deciduous to distinguish their effects on the understory,
particularly in terms of shadinwhich may influence buffaloberry growth. Common evergreen

tree species encountered were white sprBameé glaucy, black spuce Picea mariang, and

lodgepole pineRinuscontortg, while typical deciduous species were trembling aspep\lus
tremuloide$, balsam poplarRopulus balsamifefgand tamarack_@rix laricina). Species

generally recognized as shrubs but potentially8 m in height, such as green ald&in(s

viridis), were not included here. These rtarget shrub species did not represent direct overstory
canopy for buffaloberry and were thus incorporated within the same vegetation height stratum as

buffaloberry &irubs.

2.4 Analysis of effects of canopy type on buffaloberry presence across spatial scales

All analyses were performed in R version 3.(R2Core Team2014) The effects oévergreen

and deciduous canopy on buffaloberry presence were analyzed separately as well as collectively
in a Atotal canopyo category. This was done t

presence of buffaloberry shrubs.

A series of models was butb reflect the influence of canopy at different spatial scales around a

given buffaloberry shrub, varying from more immediate local scales to-svades that
considered | arger segments of the transect. W
from O m to 20 m, which we propose represents the scope of influence of an individual tree as

this upper limit corresponds to the maximum average height of tree species in Alberta (Huang et

al., 1992). Comparatively larger scales between 20 mand502 maref err ed cthbdb eads fil
to represent the collective influence of multiple trees at a forest-f@teh(note that this term is

also applied to broader spatial extentg, €lark et al.1998).



Two variants of mixegbffects logistic regression moddTable2.1) were examined using the

Al me 4 0 (Baes &t al.g20150nemodel included a total canopy variable, while the

second incorporated evergreen and deciduous canopy as individual variables to compare the
effects of each component on buffaloberry (Pearson correlation coefficients never exceeded
0.25). Nonlinear effectsvere tested by adding quadratic terms, but these were not supported in
an AIC comparison and thus linear responses were subsequently used in all models. A random
effect for transect was included in each model to account femu@pendence of observat®n

within a transect.

Scales ranged from a minimum of 2 m (average shrub width) to 502 m usimgircdement
between scales resulting in 125 different scales considered. Beta coefficients of models (total
canopy, evergreen, deciduous) were plotted agaimsiow size to examine the effects of

canopy on buffaloberry presence as a function of spatial scale in canopy cover.

2.5Analysis of spatial heterogeneity of the forest canopy and buffaloberry

To measure heterogeneity of canopy and buffaloberry, frdicteensions were calculated for
buffaloberry as well as total, evergreen, and deciduous canopy for each transect using an
adaptation of the begounting metho@dVoss 1986) Transects provide unbiased estimateld of
similar to those obtained by examining a broader spatial extent using comwtares@educ
et al., 1994)

Field intercept measurements for buffaloberry and canopy, recorded at resolutions of 0.01 m and
0.1 m, respectively, were used to evaluate the number of segments ocopfoe@dch of the

ten transects. Segments was represknith a binary presenabsence values, which were
converted to coarser scalasy ¢f presencebsence (Table.2) by increasing the segment or
Aboxo width to a maxi mum of half the transect
for buffalobery and each of the canopy categories were determined by experimentally increasing
the box width untih values generally stabilized, due to a saturation effexglor and Taylor,

1997, Halley et al., 2004¢aused by finite sample sig€enkel 2013) at which point box width

was truncated. Truncation restricts slope estimates to the spatial range across which the scaling
law holds and is necessary to ensure represenfatnadues; increasing the box width past this
saturation point reduces the slagahe loglog plot and depresses tBevalue(Kenkel 2013)
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This saturation effect was not an issue for total or evergreen canopy, for which alekdveere
used, but did occur with buffaloberry and deciduous canopy requiring the number of scales be
truncated to nine and three, respectively. Associated valueasnofs were produced per scale

for buffaloberry and each canopy category.

A generalizedinear model (GLM) was used to estimate the slope of ddgglot ofn ands for

each transect (Figu24). The slope of the regression of this relationship is equaD¢\Voss
1986)because a transect is a line bisecting adweensional distributiofRitchie, 2010) These
models therefore provided estimates of spatial heterogegity puffaloberry and the three

canopy categories for each transéétan values ob for transects were estimated with

confidence intervals calculated based ordsstribution. Three additional GLMs were fit to

assess spatial heterogeneity relationships betwedh\hkies of buffaloberry and those of the

three canopygategories across all ten transects, thus evaluating whether the fractal dimension of
canopy affected the fractal dimension of buffaloberry shrubfi¢terogeneity patterns).

3.0Results

3.1Effects of canopy and scale on buffaloberry presence
Forest caopy of trees £.3 m in height covered an average of 47% of the landscape sampled by
transects (Tabl2.3). Evergreen canopy dominated the sites with an average canopy cover of

42%, compared with 8% for deciduous canopy (overlap between these occuomeé aitss).

Forest (total) canopy had a positive effect on shrub presence across most spatial scales and in
particul ar was si gni-l78mald4202 i, @nd23804.n0(Bigureb et we e n
2.3). There was, however, a local negative peak at tha $6ale and the effect was weakest at

the 18m scale. The effect of total canopy became positive at larger spatial scales of canopy with

the strongest relationship at 294 m window size for canopy. Evergreen canopy had a negative

effect on the presence biiffaloberry shrubs across all spatial scales and was significant at local
scales from 2 m to 42 m. The effect of evergreen canopy was strongest ahthszdl@, with

two additional peaks of negative association at 106 m and 210 m, and was weake&4hthe

scale. In contrast to evergreen canopy, deciduous canopy had a positive effect on the presence of
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buffaloberry shrubs up to a 462 scale which was significant for nearly all scales ranging
between 150 m and 358 m. The effect of deciduous canopyeasest at the-&h scale and
strongest at 354 m, after which it decreased sharply and became negative at very large scales.

3.2 Spatial heterogeneity of the forest canopy and buffaloberry

Mean fractal dimensiorD)) of buffaloberry was lower than the mefaactal dimensions of the
overstory canopy (Tabl24), indicating shrub patterns are more heterogeneous. The mean
fractal dimension of deciduous canopy was lower than that of evergreen and total canopy,
signifying deciduous patterns are the most heteragenwithin the overstory stratum.
Deciduous canopy fractal dimensions also had the highest standard deviation, suggesting greater
variability in the level of heterogeneity present in deciduous patterns. Buffaloberry fractal
dimensions had the lowest stand deviation, implying the level of heterogeneity of shrub
patterns is more consistent across the study area. Buffaloberry patterns werékeaotar
approximately 2.7 orders of magnitude from 0.01 m to 5 m as illustrated by the linear
relationship 6the loglog plot (Figure2.4), while spatial patterns of evergreen and total canopy
cover were fractdlike over four orders of magnitude from 0.1 m to 1000 m (Figute In
contrast, patterns of deciduous canopy were frdig@lunder less than orader of magnitude

indicating low seHsimilarity across spatial scales.

3.3Relationships between spatial heterogeneity of the forest canopy and buffaloberry
Relationships between fractal dimensiob$ ¢f canopy and buffaloberry were positive for
evergren and total canopy cover (Figwt®). Evergreen canopy and buffaloberry fractal
dimensions demonstrated the strongest relationship with the greatest $lef@4&b = 0.571;
Table2.5), while the relationship between total canopy and buffalobeacydr dimensions was
weaker with a lower slope R 0.32;b = 0.453;p = 0.09). Evergreen canopy fractal dimensions
significantly predicted the fractal dimension of buffaloberry shrubs (p = 0.03), while the effect of
total canopy fractal dimensions wasakby significant (p = 0.09) and no relationship was found

between deciduous canopy and buffaloberry fractal dimensidrs @R0;b = -0.009;p = 0.96).
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4 .0Discussion

Ourresults indicate that the effect of forest canopy on buffaloberry presence, as well as
relationships between canopy and buffaloberry heterogeneity, differ between evergreen and
deciduous components based on intercepts measured along 20 km of transeetBndings
support our hypothesis regarding the distinct effects of evergreen and deciduous canopy on

buffaloberry patterns, and the variability of these through space.

4.1 Effects of canopy and scale on buffaloberry presence

Evergreen canopy demonstrated a significant negative effect at the local level, suggesting that
the reduction in microhabitat light availability by individual evergreen trees could be an
important factor for buffaloberry presence given the shiamideran@ of this species. Light
variability has been previously identified as a structuring agent of understory shrub patterns at a
similar fine spatial scal@-relich et al., 2003)Evergreen trees may additionally decrease local
soil moisture content, pH, and temperat{Mélgard, 1971 Beatty, 1984Binkley and

Valentine, 1991SteMarie and Paré, 199®obbie et al., 2006)This could reduce buffaloberry
growth and contribute to the overall negative effect of evergreen camoglyrub presence.

These results are consistent with those of Kembel and Dale (2006) that indicated understory
vascular plant cover was negatively associated with evergreen conifer cover at scdlgsmgf 5

but positively associated with brosehved deicluous cover over the same spatial range in a

boreal mixedwood forest.

We found that the positive effect of deciduous canopy was the strongest and most significant at
the mesescale level, however, implying the cumulative effect of multiple deciduousisee

most relevant for buffaloberry presence. Deciduous trees may promote understory shrub growth
by allowing high light penetration during seasonal-leffperiods(Ross et al., 198&onstabel

and Lieffers, 1996)Canopy light transmission also increases with the basal area of deciduous
trees(Lieffers and Stadt, 1994and thus their influence could be most apparent at broader

spatial extents, amounting to a stagde effect. Stands with a greater proportion of deciduous
trees also occur more often at lowations in the study area that are more favourable for

buffaloberry.
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The sharp decline in the strength of the deciduous canopy relationship after approximately 360 m
implies a spatial limit to the mesale effect. This decrease could relate to the nfmmaie of

evergreen trees in the study area, such that expanding the spatial scale past this point might not
incorporate additional deciduous trees, thereby weakening its effect. The effect of evergreen
canopy was also low at similar scales, particularbpyad 300 and 420 m, which suggests timber
harvesting disturbance may begin to moderate the influence of the forest canopy in general as
spatial scale increases. Cleautting is the primary harvesting method in the study area, and at
scales above 300 m ntdsansect replicates would have traversed a cutblock due to their
prevalence in the region. Buffaloberry occurred sparsely in cutblocks, but this lack of shrubs was
likely caused by removal during harvesting and their slow growth {@éiismore et al., 2000)

rather than a forest canopy effect.

4.2 Relationships between spatial heteroggnef the forest canopy and buffaloberry

Through fractal analysis, we found a significant positive relationship between evergreen canopy
and buffaloberry fractal dimensionS)(using the Zm transects suggesting that heterogeneity in
evergreen trees seal with heterogeneity patterns in buffaloberry shrubs. Thus greater canopy
heterogeneity is associated with greater buffaloberry heterogeneity, supporting our hypothesis.
This relationship was less significant when total canopy, including deciduousaases,

evaluated. These findings suggest that evergreen canopy heterogeneity has a stronger effect on
observed buffaloberry patterns, which may be linked to the dominance of evergreen trees within

forests in the study area.

Heterogeneity can be an ambigudersn in the ecological literature when the definition is not

made explici{Kolasa and Rollo, 199Duitilleul and Legendre, 1998i and Reynolds, 1994.i

and Reynolds, 1995Numerous conceptual interpretations and ecological characteristics that can
be measured result in a variety of data types and analgatalitjues for examining

environmental heterogeneity. Here we use the fractal measbDraé heterogeneity metric, the
value of which may change with analysis s¢&almer, 1988Leduc et al., 1994Yhis is not

surprising given that it indicates heterogeneity. Measuring vegetation patterns at a common
scale, as we have here, enables comparisons of theedlaterogeneity of plant species

(Kenkel and Walker, 1996¥alculating the fractal dimensioD) as a function of scale can

reveal whether vegetation heterogeneity varies in space and identify hierarchical patterns
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(Palmer 1988) Regions wereD remains stable constitute domains of scale between which are
transitions that may signify shifts in the processes governing heterog@aitgelbrot, 198;
Wiens, 1989)These dynamics may be of interest for future research of forest spatial patterns
and the mechanisms that shape them.

As different calculatio methods can produce differdhtvalues for identical dat@alinverng
1989) comparing results among fractal studies with distinct methodologies caisleading.

We are not aware of examples from the literature that utilize -@liomensional bo>counting
technique to evaluate horizontal heterogeneity of forest vegetation; this has, however, been
applied in grassland systeniitChie et al., 1994)Buffaloberry is less heterogeneous and
fractatlike over fewerorders of magnitude than big sagebrustigmisia tridentaty another
woody shrub, as measured in a Utah steppe at a similar 1.6 km transedR&chie ¢t al.,

1994) It is worth noting that, despite methodological differences, forest canopies are usually
found to be quite homogeneo(Weishampel et al., 2008outet and Weishampel, 200arker
and Russ, 2004nd fractalike over several orders of magnituddilhe, 1997) which is in line

with the findings of this study.

The boxcounting technique used here relies on sequential binary observations that are a type of
onedimensional point pattern. This is ideal for Himtercept data, such as those which represent
presene of vegetation along a transect. In contrast, point pattern analyses typically assess the
distribution of a material over a tadimensional plané/Viegand and Moloney, 20143uch as

the spatial arrangement of individual trees across a landddager, 1993 He et al., 1997)
Onedimensional analyses of forest vegetation primarily involve continuous, thtrebinary,

data and consider heterogeneity in terms of variance as a function ofFadeder, 1988Leduc

et al., 1994) Wavelet analysis, for example, is a msltale approac{Daubechies1988)that

can incorporate remetsensing data to identify hierarchical patterns in horizontal attributes like
canopy gap structu@radshaw and Spies, 19%ane et al., 2011and tree crown diameter
(Falkowski et al., 2006Strand et al., 2006)

4.3 Conclusions
This study highlights the importance of spatial scale and forest canopy composition for
characterizing patterns in understory plant presence and relationships between canopy and
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understory heterogeneity. Fractal analysis addresses issues afequatelence associated with

the quantification of environmental heterogeneity, but has been mostly overlooked as a tool for
examining forest vegetation patterns and spatial relationskigsboxcounting approach used

with line-intercept transects is a straightforward and practical technique that enablescalalti
assessments of vegetation heterogeneity, represented by a singleDnaimit can identify

fractatlike vegetation patterns

Indicators of heterogeneity and fraelie properties for key animal resources like fruiting

shrubs McLellan and Hovey, 1993Vunro et al., 2006¢an contribute to studies of foraging

strategy, consumeesource interactions, andidal movement in spatially complex
environments\W{iens and Milne, 198Ritchie, 1998Ritchie and Cf, 1999, Haskell et al.,

2002 Sims et al., 2008)ractallike resourcalistributions, for example, point to scale

dependence in resource density and consumer foraging behaviour as determined by animal body
size, which controls the scale of environmental percepRacl{ie, 1998 Ritchie and OIff,

1999 Haskelletal., 2000 r envi ronment al .Theggigaificanbrelatidnghip i n s ,
identified here between evergreen canopy and buffaloberry heterogeneity indicates the potential
for estimating understory plant patterns froamopy patterns, which can be assessed at broad
spatial extents with remote sensing, and could contribute to the quantification of buffaloberry

fruit resources at a landscaleel.
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Table2.1: Mixed-effects logistic regression model struetsideveloped to evaluate the effects of
total forest canopy as well as evergreen and deciduous canopy components on buffaloberry shrub

presence, with a random effect for transect.

Model Name Model Structure

Total Canopy totalcanopy + (1 | transect)
Evergreen and Deciduous evergreen + deciduous + (1 | transect)

Table 22: Number and width (m) of begounting segments used for fractal dimension

calculations for buffaloberry shrubs and forest canopy.

Intercept Type Segment or "Box" Width (m) Range Total Number of
Scales
Buffaloberry 0.01, 0.02,0.05,0.1,0.2,0.5,1, 2,5 9
Total Canopy 0.1,0.2,05, 1, 2, 5, 10, 20, 50, 100, 200, 50 13
1000
Evergreen Canopy 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 50 13
1000
Deciduous Canopy 0.1,0.2, 0.5 3
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Table2.3: Percentage of each transect covered by total, evergreen, and deciduous canopy as well

as buffaloberry shrub intercepts.

Percentage of Transect Covered

Transect Total Evergreen Deciduous Buffaloberry
Number Canopy Canopy Canopy Shrubs
1 68.99 49.41 32.47 14.02
2 26.82 24.15 3.35 0.11
3 35.84 34.06 2.69 0.45
4 57.73 49.04 13.74 0.85
5 46.00 41.75 5.39 0.23
6 43.39 37.16 8.98 0.15
7 50.97 46.65 8.27 1.95
8 59.40 59.40 0.02 0.40
9 62.25 62.16 0.12 1.26
10 18.45 18.12 0.56 0.25
Mean 46.98 42.19 7.56 1.97
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Table2.4: Fractal dimensions of buffaloberry shrubs and forest canopy categories for each
transect. Fractal dimensions were calculated using an adaptation of tbeumixig method
(V0ss1986).

TransectNumber Total Evergreen Deciduous Buffaloberry
Canopy Canopy Canopy Shrubs

2 1.84 1.83 1.75 1.71

4 1.94 191 1.80 1.70

6 1.91 1.88 1.71 1.77

8 1.95 1.95 1.69 1.81

10 1.79 1.78 1.88 1.71

Minimum 1.79 1.78 1.69 1.70

Standard Error 0.02 0.02 0.03 0.01
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Table2.5: Results of generalized linear models describing relationships between fractal
dimensions of buffaloberry shrubs and forest canopy categories. Fractal dimensions were
calculated using an adaptation of the 4ooxinting method (Voss98B6). Asterisks indicate a
significant effect& = 0.05).

Model Beta Intercept R2 p SE 95% C.I.
Name Coefficient
Total 0.453 0.892 0.316 0.091 0.236  -0.091, 0.996
Canopy
Evergreen 0.571 0.674 0.457 0.032* 0.220 0.064,1.078
Deciduous -0.009 1.769 <0.001 0.959 0.170  -0.401, 0.383
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Figure 2.1: Location and elevation ok transects (N=10) established across the study area southee
Hinton, Alberta (53A246410N, 117A336500 W)rubs

and forest canopy cover.
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Canopy (C): m Evergreen = Deciduous m Overlap
Buffaloberry (B): darker grey indicates shrubs in close proximity

Distance Along Transect (m) Distance Along Transect (m)

Figure 2.2: Raw intercept data illustrating the distribution of evergreen and deciduous forest canopy (C) and buffaldb@B)yistercepts as

measured along-Bm transects (TN=10) in the area near Hinton, Alberta.
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Chapter 3: Assessing the importance of buffaloberry spatial heterogeneity for
grizzly bear food resourceselection

1.0 Introduction

Environmental heterogeneity influences anitmathaviour (Wiens and Milnd989; Crist et a).

1992; With 1994), and selection for food resources likidpends on how the properties of

those resources vary in space acrossamgscape (Heinrigl979). The response of an animal

to this variation in food quality and abundance is contingent on the amount of resource
heterogeneity that it detects in its surroundings, which is consistent with its environmental
Agr ai n gl9@)L @plimahfaraging theory proposes that animals will seek to acquire food
resources at the lowest energetic cost, thereby maximizing efficiency and fithess (Charnov
1976), assuming that animals have perfect knowledge of these resources (R99pdrt

However, the information available to animals on the heterogeneity of the surrounding resources
is not in fact complete (Pyk&984), but rather constrained by their grain size, which affects their
foraging strategy and selection for food resources. Giyneageain size increases with body size
(With, 1994; Ritchie1998; Mech and ZollneR002), suggesting that large mammals such as
grizzly bears {rsus arctoy would perceive their environment at a relatively broad spatial scale
beyond that of the localgich. Experimental scales should be dictated by the organism and
phenomenon under study (Wiens et B986; Addicott et a).1987), but if grain size is not
considered in analyses of resource selection, then subsequent inferences may not be valid.
Examindion of grizzly bear food resource selection (e.g. Nielsen,2@10) should therefore
incorporate landscagevel measures of resource attributes, whwoluld better reflect the

amount of resource heterogeneity bears observe and thus provide mobéevakights into the

factors relevant for selection.

Resource selection functions (RSFs) are statistical tools for evaluating animal habitat selection
and the relative probability of use given particular environmental site characteristics (Manly et
al., 2002). RSFs are estimated using a binary response variable representing either-presence
absence (usednusedlesign) or preseneavailable data types (usedailable design) (Boyce et

al.,, 2002). A variety of statistical approaches may be applied to ceddriBFs, although they are
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often based on using logistic regression to quantify the selection coefficients (Manly et al.
2002).

The development of GR@diotelemetry methods in recent decades has facilitated the study of
large, vagile mammals (Bergmanagt 2000) such as grizzly bears, and when incorporated in
RSF models, these data are compatible with a-agatiable design as no information is
available regarding true absences (Boyce ¢2@02). Though GP&adiotelemetry technology
enables substantial amounts of animal movement data to be collected, these data are usually
affected by spatitemporal autocorrelation due to the frequent observation of the same
individuals over time (Nielsen et a22002; Boyce etlg 2002).The addition of random effects

into populationlevel RSF models has been identified as a method faessidg autocorrelation
(Gillies et al, 2006), as well as controlling for differences in the number of GPS locations
recorded per individual animal (Bennington and Tha{®84). These advantages have
contributed to the increased application of mpedfects logistic models, a type of generalized
linear mixed model (GLMM) (Skrondal and Rablesketh2004), in studies of animal resource
selection (Gillies et gl2006; Hebblewhite and MerrjlR008; Koper and Mansea2009).

RSF models that have been dexpeld previously for grizzly bear habitat selection in west

central Alberta (Nielsen et aR002, 2003, 2004 Gillies et al, 2006; Nielsen et gl2006, 2009,
2010; McKay et aJ.2014) have mainly evaluated the effects of environmental variables, such as
habitat cover type and elevation (e.g. Nielsen ¢R@02), that are measured at the pdésiel.

The influence of environmental heterogeneity for resource selection has been investigated for
other animals such as large ungulates (Boyce,&Q03; Arderson et al2005), although

questions of scale, which are imperative for testing heterogeneity effects, have been largely
overlooked in the context of grizzly bear habitat selection. The few studies that have directly
considered spatial scale have fadi®n the extent of the landscape available for bear use
(Nielsen et a].2004g; Ciarniello et al.2007) rather than the spatsaale at which properties of
theresource units themselves were measured. Previous grizzly bear habitat selection models also
do not usually incorporate food resource attributes as explanatory variables (but see Nielsen et
al., 2003, 2010), despite fogarobability models often explaining bear selection more effectively
than those which are habHatiented (Nielsen et al2003) Buffaloberry occurrence in

particular, along with that of a few other key food items, significantly predicts bear foraging
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activity (Nielsen et a).2010). These factors thus indicate that the importance of food resource
heterogeneity for grizzly bearlsetion has not been fully explored, although it has been

demonstrated to strongly influence grizzly bear foraging behaviour (Searlg2€0&).

Canada buffaloberry§hepherdiaanadensisis one of the primary fruit resources for grizzly
bears in in te Canadian Rocky Mountains, where it comprises a major component of their
summer and early fall diet (Munro et,&006). The fruit is particularly crucial during

hyperphagia, when bears increase their food consumption to build body fat reserves in
preparation for winter denning (Nelsd®80). Grizzly bear selection for buffaloberry has been
assessed using predictgoaf shrub occurrence (Nielsen et 2003; Nielsen et §l2010), but

given the dioecious habit of this species and that only female plants bear fruit, occurrence does
not correspond to the availability of the food resource itself. Although local defgjtizzly

bears is correlated with buffaloberry fruit abundance (Nielsen, &04l6), selection for

buffaloberry fruit resources has not been fully examined. An understanding of seasonal habitat
use of this important resource is valuable for informimgconservation and management of
grizzly bear populations (Boyce et,&002), including the threatened population in Alberta
(ASRD, 2010).

The objective of this study is to evaluate the role of landsdeyel food resource heterogeneity

in grizzly bea selection for buffaloberry fruit patches during the fruit ripening period by
comparing responses of bears to different foraging hypotheses. Buffaloberry heterogeneity, as
defined here, reflects both shrub distribution and variability in patch quajiesented by fruit
density, which are properties that contribute to spatial heterogeneity (Kotilar and Y¢@%
Support among differeribraging hypotheses will also be compared for thefjuigéing period

(vs. fruiting period) to further highlight ghbuffaloberry attributes that most affect selection for

this resource.

The primary hypothesis is thiaindscapdevel buffaloberry heterogeneity will be important in
explaining grizzly bear resource selection during the fruit ripening period becaugetbeiye
their environment at spatial scales beyond the patch, in accordance with their environmental
grain size, and thus landscapeel food resource patterns affect their foraging behavidfurs.
patterns during the fruit ripening period affect selec{ioehaviour), then we would expect less

differentiation in the level of support among foraging hypotheses during thigeneng period,
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since buffaloberry attributes would have a weaker effect on grizzly bear selection before the
resource is availableife). Although we recognize that patches with buffaloberry may have co
occurring resources and some weak patterns during thrgopreng period may still be evident,
we expect the effects of buffaloberry attributes to be more apparent during theémwing

period.

2.0 Methods

2.1 Study Area

Thestudy area was defined by the spatial extent of a buffaloberry fruit density model developed

by Nielsen et al. (2016) and is comprised of 19,942 &hmanaged, conifedominated forest
located near thetommf Hi nt on (53A2406410N, 117A3306500 W)
of westcentral AlbertgFigure 3.1) The study boundary encompasses the same study area

described in the previous chapter but extends further to the south and east, and is contained

within the borders of the Yellowhead Population Unit for grizzly bear management as delimited

by the provincial government. Elevation ranges from approximately33800 m, and is higher

in the western part where it borders with Jasper National Park.

2.2 Buftloberry fruit data preparation and spatial analysis

All spatialanalyses were performed in a GIS (ArcMap version 10.2.1; ESRI).ZDid

buffaloberry model (Nielsen et a016) provided fruitlensity estimates for the study area at a

30 m x 30 m (900 A) pixel resolution. These density values were divided by 1000 so that model
coefficients would reflect the change in bear selection due to-aronmcrease of 1000 berries
(~1-3 shrubs depending on annual productivity), which is a scale more releveatrso The
standard deviation (SD) of fruit density and proportion of the landscape occupied by
buffaloberry shrubs were calculated within ci
229 and 457 m. These distances were selected to represent &adihger and hourly

movement rates of grizzly bears, respectively, as determined by analysis of weekly movement
path length and step (GPS raduwllar fix) number during the months of July and August for a
subsample (5 individuals) of the same bears heeel for RSF models¢eAppendix 1).

Landscape statistics were calculated for both of these gpatjoral scales to test whether one
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was more appropriate for studying fruit foraging behaviour, which may occur at a temporal scale
finer than that of holy GPS radiecollar fixes. Euclidean distance values indicating the

proximity to the nearest buffaloberry patch were also calculated for each pixel within the study
area, to which a leglus-one transformation was applied. These steps produced patth
landscapéevel measures of buffaloberry attributes to represent grizzly bear foraging strategies
(Table3.1).

2.3 Grizzly bear GP&dio-telemetry data preparation and spatial analysis

A total of 12,706 GP$adiotelemetry locations (fRl Research; Hint#B) were obtained from

eleven radiecollared grizzly bears for the period from JufilSeptember 1%of the years

2011t0 2015. GP&diot el emetry | ocati aseor ¢prasemnased dmie
timeframe used was selected to include thréods prior to and during buffaloberry fruit

ripening, based on grizzly bear diet studies in the same study area (Muny@G&.

Specifically, Munro et al. (2006) found that fruit resources, primarily buffaloberry and black
huckleberry Yaccinium meimranaceuny, comprised on average 15% of the grizzly bear diet in

July, but that this increased to 49.7% during August and early September. As buffaloberry
fruiting phenology varies inteannually with temperature and precipitation (Krebs e2809)

andfruit ripening data across the study area (elevation gradients) were not available, increases in
bear use of defined buffaloberry patches was thus assumed to coincide with the buffaloberry
ripening period when the fruit would be most palatable. Here,rhggeningperiod was

defined as July®li 31% (Period 1), and the buffaloberry fruit ripening period was defined as
August £'i September 15(Period 2).

Annual sample size varied between one and four individuals per year due to the limited number
of monitored bears and the requirement that summer home ranges largely overlap the geographic
extent of the buffaloberry fruit density model. There was no repeated use of the same individual
for multiple years even if data were available, in order to redatential bias associated with
distinctive foraging habits particular to a given bear. The sample of bears consisted of three

males and eight females, although it was not known whether females were accompanied by cubs.

GPS coordinates of grizzlies werermally recorded on an hourly basis, although some minor
temporal gaps were present due to technical errors. Only crepuscular (twilight) and diurnal
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(daylight) locations recorded between 6 am and 10 pm were considered in subsequent analysis as
this represets the typical daily foraging period for bears during the summer months (Munro et

al., 2006). This hour range was determined by consulting sunrise, sunset, and civil twilight tables
for Hinton for the month of August, as a compromise between greateriddghgth in July and

reduced length in September. Nigimhe GPS locations recorded between 11 pm and 5 am were

thus removed from the analysis.

Separate seasonal home ranges for Periods 1 and 2 were delineated per bear by calculating two
Minimum Convex Ptygons (MCPs) that effectively encompassed all the GPS locations

pertaining to each period. An MCP thereby represented the distinct area of the landscape used by

a given bear during one of the timeframes and ensured that resource selection analysesl per per

were spatially explicit. Random points were generated within each MCP at a density of 10

points/knf of home range, resulting in 137,608 random points overall. Random locations were

used to define favailabl eo reasfourementfiooned et
(GPS locations) resources following a Type Il Resource Selection Function (RSF) study design
(Manly et al, 2002).

Any fiusedodo or fiavail ableo points that fell ou
fruit density valuegor these sites could not be obtained. Patchandscapdevel buffaloberry

attribute values for fruit density, landscape proportion, standard deviation of fruit density, and

di stance to the nearest resourceanpgatialvawénmndl e

points.

2.4 Field visits to bear GPS locations

Groundtruth site visits were conducted in the summer of 2015 for a total of 94 grizzly bear GPS
radio-collar fix locations. These GPS locations were associated with five individual bears, four
of which were later used in RSF models. GPS locations had been recorded betwegarddly 1
August 1" with site visits occurring-B weeks later between July'2and August 28. This
timeframe represented the entire-ppeening period for buffalobey and part of the ripening

period. GPS locations were randomly selected for visitation and were balanced between
crepuscular and diurnal sites. Based on field observations, the percentage of sites with

buffaloberry shrubs present and the percentage atwvituit was detected were calculated.
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2.5 Candidate foraging hypotheses and model development

Tena priori candidate foraging hypotheses (TaBI2) relating to foraging strategies for patch

and landscapkevel buffaloberry (Tabl8&.1) were developed tdescribe grizzly bear selection

for buffaloberry fruit resources. Patadind landscapkevel buffaloberry measures were also

combined to represent tradéfs between foraging strategies represented by each variable.
Buffaloberry fruit density at the patdhe v e | represented resource qua
hypothesis, which predicted that bears select for higher quality patches while focusing less on

patch encounter probability. Distance to the nearest buffaloberry patch represented resource
accessibilityand t he oOproxi mityd hypothesis, which su
quality or encounter probability, but instead seek to quickly meet their caloric requirements.
Buffaloberry landscape proportion represented the broader distributionresthece and the
Oproportiond hypothesis, which suggested that
focus instead on encounter probability. Standard deviation of buffaloberry fruit density
represented variabi |l ivtayr iiarbirle stoyudr chey pgu ahleistiys ,a
bears select for areas with greater variability in patch quality because this contrast enables them

to more easily identify high quality patches. The proportion and variability hypotheses together
comprisedth®é het er ogeneityd hypothesis, thus repres:
abundance, which suggested that bears prioritize patch encounter probability but select for areas

with more variable patch quality due to the benefit of landscape contrastdbrgsaessment.

A set of mixedeffects logistic regression models was built for each of the ten foraging
hypotheses (see Appendix 22B). Separate models differed in their inclusion of particular
variables and interaction terr(see Table 3.3 for abbreveat codes)as well as the incorporation

of local elevation (36n pixel) as an environmental covariate expected to affect fruiting

phenology of buffaloberry which was tested as both a linear and quadratic term. Interactions
involving either the standard dation of fruit density or elevation, in particular, were examined

as it was thought that these may alter the effect of several other explanatory variables on grizzly
bear selection. Specifically, it was theorized that greater variability in resourcty ¢siaindard
deviation of fruit density) could increase the effects of both proportion and fruit density on
selection, and that higher elevation could potentially decrease the effects of proximity, fruit

density, and proportion.
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Sets of mixeeeffects logstic models corresponding to each foraging hypothesis were fitted to

each seasonal period in order to estimate selection coefficients and assess support of hypotheses.
As logistic regression assumes a4tioear relationship between the response and eajdan

variables and does not require normality or homoscedasticity of the error term (Cox and Snell

1989), these properties were not evaluated. These models were intended to investigate
populationlevel effects, rather than individuble v el , adhad amdsindwasiel abl eo
all bears were grouped. Although GRSliotelemetry data are affected by spagmporal
autocorrelationthusviolating the assumption of independence, a random intercept term for

individual animalwas added whichddressetheseissues by assuming namdependence of

observations within an animdlut independence between animals (Gillies eRAD6).

Each model was fit separately for the 28%nd 457m radius landscaplevel buffaloberry
variables to discern which scal@s more supported in grizzly bear resource selection.
Multicollinearity among explanatory variables was examined using Pearson correlation
coefficients (to ensure these did not exceed |0.7|) and variance inflation factors (VIFs) (to

confirm these were nagfreater than 10.0).

2.6 Model selection

Akaike Information Criterion (AIC) (Akaikel974) was used to rank the ten most supported
models (foraging hypotheses) among models tested within each period thus considering the
principles of parsimony (Burnham and Anders®002). Ranking of hypotheses were compared
between periods to assess differences in grizzly bear foraging strategies prior to and during the

buffaloberry fruiting period.

Coefficients from the topanked model for each period were examined to evaluatelttive
importance of different buffaloberry measures within the context of each top foraging
hypothesis, and the amount of change in bear selection expectedjp@itanerease in each
explanatory variable. Coefficients were also used to prediatithdil responses of variables and

their interaction terms on the relative probability of grizzly bear use of a site.

2.7 Comparison of foraging hypotheses for field visited bear GPS locations
AIC comparisons were also used to evaluate support for theuigndg period models based on

field data obtained during the visits to grizzly bear GPS locations, with the goal of further
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assessing whether these models could explain buffaloberry shrub presence at sites visited by

bears spanning the early to nrirdit ripening period. Mixeekeffects logistic regression was used

with a random effect for individual bear to account for differences in the number of sites per bear

that were visited. Model structures were mostly consistent with those of the fruiting period,

although elevation variables were removed in some cases due to Pearson correlation coefficients
that were O|0.7]|]. One model (Density + Proxim
the main variables. A temporal variable was added represenéimyithber of days after July' 1

that the bear GPS location had been recorded at the site, as it was expected that buffaloberry

would be more frequently observed at sites used by bears later in the season.

3.0 Results

3.1 Selection of spatial scale for @sctapelevel summary of buffaloberry

Neither the 229n nor the 457 landscapéevel buffaloberry variables consistently ranked

higher in model support (AIC comparisons) for explaining habitat selection by grizzly bears (see
Appendix 2A 3B). However, becae the 45+ variables appeared in the top two models for

the primary season of interest of fruit ripening (Period 2), this scale was chosen for assessing and
comparing foraging hypotheses for both thefpud ripening period (Period 1) and the fruit

ripening period (Period 2).

3.2 Assessing support for foraging hypotheses during thep@eing period (Period 1)
During the preripening period, the mosupportedoraginghypothesis combined the density
and proximity hypothesg3 able 3.4). The mode&xdusively containd patchlevel buffaloberry
variables includingriit density, distance to buffaloberry, and a quadratic relationship for
elevation (Tabl& .5).

Distance to buffaloberry patches exhibited a positive effect on selection of habitats thus
indicatinggrizzly bear use of sitefsirther away from buffaloberry patch€gable 3.5) This
response was logarithmic in natusaggestinghatchanges in selection were substantial even
acrossshort linear distancd§igure 32). Standardized coefficientemonstratethat distance
was the strongest of the fitted explanatory variglaasdits effect was ovethree tmes greater
than that of fruidensity which was tle weakes{Table3.5).
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Fruit density was positively related habitatselection (Tabl&.5) with the relative probability

of bear use increasing by 30% between sites where no fruit was present and those with a density
of 6000 fruit/900 rfi(Figure3.3). Elevation negatively affected selection of sites during the pre
ripening period (Tabl8.5) with the relative probability dbear use declining by 50% as

elevationincreasedrom a low of 800 m to a high of 2800 m (Figurd)3

3.3 Assessing support for foraging hypotheses during the fruit ripening period (Period 2)
During the fruit ripening pgod, the most supported foraging hypothesis was the heterogeneity
hypothesigTable 3.6) The model wasomposed mainly of landscaevel buffaloberry

variables in the form of interactions between the amount of surrounding buffaloberry
(proportion) andhe variability in resource quality (standard deviation of fruit density), as well as

the amout of surrounding buffaloberry and elevation (Tabl@.

Standardized coefficientethonstrated that variabilityas positively related to grizzly bear

habitat skection during the fruit ripening period (Tal8e7). Amount of surrounding

buffaloberry was negatively related to habitat selection, although the interaction between this and
variability was positive indicating greater use of areas with more buffalolvey variability

was high (Table.7). Indeed, when examining predictions of the relative probability of bear use

for these two variables, selection was highest when the amount of surrounding buffaloberry
approached 1.0 and variability in resource qualitspassed approximately 4,000 fruit per 900

m? (Figure3.5). However, at similarly high amounts of surrounding buffalohdmay very low
variability, the selection was low thus pointing to the importance of contrast among landscape
patches in bear seleati for buffaloberry resources. Once variability in resource quality

exceeded 800 the probability of bear use was moderate to high across all amounts of surrounding
buffaloberry, suggesting that bears are more likely in general to utilize areas of tlvaends

associated with greater variability.

Elevation was negatively associated with bear habitat selection and was the weakest overall
among individuakxplanatoryariables (Tabl&.7). The interaction between elevation and
amount of surrounding buffalobgr(proportior) was negative and comparable in strength to the

first interaction term, albeit opposite in direction (Tablé).
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3.4 Comparison of foraging hypotheses between theipesing and fruit ripening periods

Theelevation andhull models received the lowest amount of support in both periods and ranked

ninth and tenth, respectively. Theprea peni ng peri od was <character.i
compared to the fruit ripening period, with a difference in model supp6dtlo#AlC points

between the most supported model andhiliiemodel (Table3.4). The fruit ripening period was
associated with higher @AIC values and theref
of up t0985.2AIC points (Table3.6). Excludingthe nullaid el evati on model s, t
between the top and eighth highestked models was 604.4 for the jpi@ening period and

904.0 for the fruit ripening period.

The order of support for foraging hypotheses changed moderately betweenripemrg and
ripening perbds. Specifically, the variabilitypothesis demonstrated the largest increase in
support from the prepening to ripening period, while the largest decrease in support was for
the proximity and proportion hypotheses (Tab®). The thresther models that incorporated
the variability hypothesis, including the Heterogeneity, Variability + Proximity, and Variability
+ Density models, also increased in support between periods, while the Density + Proximity

model decreased in support.

3.5 Conparison of patchand landscapédevel variables betweehe pre-ripening and fruit
ripening periods

Neither patchnor landscapéevel models consistently ranked higher in AIC support during

either period. Although the most supported model during theipeaing period contained

patchlevel variables, the secomdost supported model included landscipe! variables with

a @Al C of 8.7 points. The most supported mode
landscapdevel variables with the second masipported model combining both pateimd

landscapdevel variables. However, in contrast to the-ppening period, these models were

separated by 251.1 AIC points indicating that the first model performed considerably better than

the second.

3.6 Field visits to bear GPS locations

Of the 94 grizzly bear GPS locations visited in the field, buffaloberry shrubs were present at 30

sites (32%) and fruit was detected on female plants at nine sites (10%). The proportion of sites
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with fruit may be underestimed here, as berries may have been present on shrubs when a GPS
radio-collar fix was recorded, but could have been depleted by the time of site visit. Additionally,
based on field observations, the 2015 fruiting season was characterized by low buffaloberry
productivity that was likely well below the intannual average.

3.7 Comparison of foraging hypotheses for field visited bear GPS locations

The variability hypothesis was the most supported for explaining buffalokiem presence at
sites used by bearand the combination of this and the density hypothesis ranked loaer at
A1 C orfdicafing idearly equivalent suppditable 3.9). However, dbe second most
supported model with greater complexity was ranked lower than the simpler, theslggests
the density variable was an Ouni n freceivedanbre v e
supportthan theelevationmodel. Thee was a differencef 7.9 AIC points between the most
supported model arttiat which received thewestamaunt of support Proximity).

Standardized coefficients from the most supported model (Variability) demonstrated that
variability in resource qualitistandard deviation of fruit densjtwas positively related to
buffaloberry shrub presence at sites visited bydyesith elevation exhibiting a similarstrong

but negative effect (Table 3.10). The standard error of the temporal coefficient was larger than
thevalue of thecoefficient itself, indicating the date of bear use had a weak effeghetner

shrubs wer@resentat a site

4.0 Discussion

These results suggest that grizzly bear selection for buffaloberry is influentzttbgape
spatial heterogeneity @fuit resources. Patelevel foraging hypotheses were less meaningful
during the buffaloberry fruit ripening period, supportthg importance abroader

environmentagrain in resource selection by grizzly bears.

Support for the more complicated hypothegat combine factors for both the ypigening and
fruit ripening periods implies that grizzly bears utilize multiple foraging strategies when

selecting resources (e.g. Senft et E87). This adaptability may be particularly necessary in

pa

this study area where anthropogenic disturbance caused by resource extraction and development

is prevalent (Gaulton et aR011), requiring that bears navigate a dynamic environment.
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4.1 Supportdr foraging hypotheses during the mipening period (Period 1)

Prior to fruit ripening, less differentiation was observed in the level of support for the ten

foraging hypotheses, although this was expected as buffaloberry attributes would have less of an
effect on bear selection before the food resource is available. The hypothesis représénting
density and proximity (distance to nearest buffaloberry patch) was most supported, with bears
selecting for sites further away from buffaloberry shrubs wimialy have been associated with

other food items such as clovarifolium spp.) (Roever et al2008). The variability hypothesis

was represented in both the second and third most supported hypotheses, indicating fandscape
level variability in resource qlity appears to influence grizzly bear selection prior to fruit

becoming ripe (see Appendix 4 for further detailsardng the preipening period)

4.2 Support for foraging hypotheses during the fruit ripening period (Period 2)

The heterogeneitfpraging hypothesis was the most supported during fruit ripening,
demonstrating that both the distribution of a resource and the variability in quality among
patches affects resource selection by bears. Foraging strategy thus focuses more on the
probability of resource patch encounter (Sims et 2008) where greater landscape contrast
facilitates the assessment of patch quality and thus erzddes to identify high quality patches

more efficiently. Landscape resource heterogeneity therefore acts as a cystditeiteon.

The most supported model tested included an interaction between the amount of surrounding
buffaloberry shrubs (landscape proportion) and the variability in resource quality (standard
deviation of fruit density), which, together, representefababerry heterogeneity. Selection of
habitats was highest when both surrounding buffaloberry and variability in quality were high

(Figure3.5), indicating that landscape contrast promotes use of resource patches.

The second interaction between the amadisurrounding buffaloberry and elevation suggested

that when bears used higher elevations there was little to no buffaloberry in the vicinity. Average
elevation of sites used by grizzly bears (GPS locations) where buffaloberry was also present was
1502 m(ranged from 838508 m), while sites used without buffaloberry averaged 1647 m
(ranged from 952861 m). It is important to note that buffaloberry presdrare represents

shrub occurrence and not directly fruit abundance, which declines with elevasied dn its

positive association with warmer temperatures at lower elevations (Nielser261.8). These
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findings suggest bears were also selecting for higher elevation sites that were less favourable for
buffaloberry and more conducive to other beadfosuch as black huckleberry (Munro et al.
2006).

During fruit ripening, the heterogeneity hypothesis received considerably more support than the
second most supported hypothesis, which was represented by both variability in resource quality
and proximiy (distance to nearest buffaloberry patch). Support for the heterogeneity hypothesis
related most to the interaction between the amount of surrounding buffaloberry and the
variability in resource quality. The secerehked model also incorporated the Viility

hypothesis, but these had a large discrepancy in AIC value between them.

Overall, the variability hypothesis emerged during the fruit ripening period as thénmpostant
element of the foraging hypotheses with an increase in AIC rank of all tthelsrio which it

was included. If a bear utilized areas where buffaloberry patches were widespread with high fruit
density it would be characterized by lower landscape variability and increased landscape
homogeneity. However, the benefit of variabilityguality was apparent with the variability and
density hypothesis receiving more support than either the variability or density hypotheses alone.
Bear use of buffaloberry resources may thus be contingent not only upon locating high quality

patches, but als@cognizing them as high quality patches.

Aside from clarifyingpatch quality, the significance of landscape variability in grizzly bear
resource selection is likely connected to their generalist nature and ability to utilize a variety of
food types (Hameet al, 1991; Mattson et 311991; McLellan and Hovey995; Munro et a).

2006). Both grizzly and black beatdr6éus americansi) adjust their foraging behaviour based on
the annual and seasonal availability of food resources (Jonkel and A®vanBunnell and

Tait, 1981; Rogersl987). Resource distribution and abundance therefore sifigloitat

selection (Jonkel and CowalB71; Nielsen et g12004, 2010).

Fruit density is a function agdnvironmental and demographic factors that influence simauth

and fruit production, such as local canopy cover (Ha@#96; Nielsen et 3120040) and density
(Johnson and NielseB014). Greater variability in fruit density suggests that a broader range of
site types provides more potential (high diverdity)other food resources. As environmental

heterogeneity promotes plant species richness (Kreft and®208(@), selecting more
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heterogeneous areas of the landscape thus provides animals with the opportunity to substitute
food resources more readily becausore varieties may be present in the vicinity. This strategy
may be in response to environmental stochasticity, whereby if one key food item such as
buffaloberry demonstrates poor annual productivity, alternative options are accessible. Greater
landscapéneterogeneity may thus contribute to grizzly bear foraging success by facilitating
dietary flexibility. It also suggests that bears may be optimizing macronutrient diets by foraging

on complementary resources (Coogan eéll4).

Although the use of GP&diotelemetry data provides insight into habitat selection, it alone
cannot confirm foraging activity unless groutndthing is performed (Munro et a2006).
Landscapdevel food resource heterogeneity has, however, previously been identified as
important to grizzly bear foraging behavio(@earle et a]2006). Searle et al. (2006) conducted
feeding trial experiments where the spatial arrangement of patches was manipulated and
residence times of resource patches examined. The authors demonstrae=idinrate time

within a given patch was affected by the surrounding spatial context in the patch hierarchy with
models accounting for this broader heterogeneittiriés more supported than those that did

not consider scales above the local paéstel.

4.3 Field visits to bear GPS locations

Site visits to grizzly bear GP&diotelemetry locations in summer of 2015 demonstrated that
buffaloberry was present at 32% of sites used by bears with fruit observed at 10% of sites. This
was lower than expected lealson diet and prior site visits by Munro et al. (2006) who found that
fruit in general comprised almost 50% of the grizzly bear diet in August and September. No
published information is available about buffaloberry productivity in the Alberta foothiiisgiu

2001 to 2003 when Munro et al. (2006) obtained scat samples, although the 2015 fruiting season
was considered to be below normal. Consequently, in 2015 it is presumed that bears in the study
area substituted with other food resources including huekigliruit which occurs at higher
elevations. Bear GPS locations that were visited had mostly been used by bears in July with the
latest date of use being Augusf™.8o only about 40% of the fruit ripening period was

represented. Future site visits coatd in a year of higher productivity that concentrated on

August and early September GPS locations may serve as a more suitable indication of the

presence of buffaloberry at sites used by bears.
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4.4 Comparison of foraging hypotheses for field visited Bd2S locations

The variability hypothesis was also the msgpported model evaluating the presence of
buffaloberry shrubs at field visited grizzly bear locations. Bears would be expected to
demonstrate weaker selection for buffaloberry resources in gebesow average productivity,

as was implied by the moderate rank of the null and elevation hypotheses and the low amount of
differentiation in support among all hypotheses. These results are consistent with previous
habitat selection results describdmbae in that they highlight the role of landscédpeel

variability in grizzly bear resource selection, with bears more likely to select sites with
buffaloberry present if the surrounding area was more variable. This was observed even in a year

with lowerthan normal fruit production.

These findings emphasize the role of landscape resource heterogeneity in animal habitat use and
highlight the value of incorporating measures of spatial variability into resource selection
frameworks. Consideration of larggpatial scales provides insights into @mvironmental

variables that affect animal space ,um®l more specifically foraging behaviours,igthmay be
overlooked if the focuss limited to thepatchscale (Morrison et gl2006). Sampling resources
atbroader scales is more consistent with the scale at which large animals, including grizzly
bears, perceive and respond to their surroundings (Searlg28i04l) andhus help to clarify the

factors that influence their foraging behaviour.
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Table3.1: Buffaloberry attributes and corresponding spatial scales considered as components of candidate foraging hypotheses (model

types) for grizzly bear selection of buffaloberry fruit resources prior to and during the fruit ripening period.

Buffaloberry  Spatial Model Variable Foraging hypothesis Strategy for maximizing
attribute scale variable explanation foraging efficiency
Density Patch fruitdensity 9 | oc al f 9 bears do perceive local 1 bears will select for areas of
of resource patch quality higher patch quality and
(30-m patch  lessfocus onencounter utilize them until quality is
pixel) probability diminished
1 bears will select for higher § reduces energy expenditure
quality patches associated with travelling
between patches of lower
quality
Proximity Patch distanceto | immediate 1 bears will prioritize 1 bears will opportunistically
nearest potential satiation and seek to utilize the closest resource
buffaloberry accessibility quickly meet caloric patch to theicurrent location
patch of resource requirements 1 no explicit strategy to
1 neither patch quality, nor increase foraging efficiency

encounter probability are a
focus of their strateg
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Table 3.1 (extended): Buffaloberry attributes and corresponding spatial csmasédered as components of candidate foraging

hypotheses (model types) for grizzly bear selection of buffaloberry fruit resources prior to and during the fruit ripeging pe

Buffaloberry  Spatial Model Variable Foraging hypothesis Strategy for maximizing
attribute scale variable explanation foraging efficiency
Proportion Landscape proportion 9§ broader spatia { bears do not necessarily 9§ bears will select for areas
0 distribution of perceive local patch qualit where the resource is more
(229-m or buffaloberry resource 1 more focus orencounter widespread
457-m present probability { increases probability of
radius) 1 bears will utilize all encountering a patch of any
resource patches they loce guality (complementary to
proximity)
Variability Landscape standard {1 degree of 1 bears do perceive patch  § bears will select for areas
deviation differentiation quality with greater variability in
(229m or (SD) of fruit between T but with more focus on patch quality
457-m density adjacent encounter probability 1 higher contrast facilitates
radius) resource 1 bears will prioritize high assessment of patch quality
patches quality patches but still and ability to identify high

utilize all patches they
locate

quality patches
(cue for exploitation)
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Table3.2 Ten candidate foraging hypotheses (models) for grizzly bear selection of buffaloberry fruit resources for which models were

developed, tested, and ranked by AIC for both theipening (Period 1) and fruit ripening periods (Period 2).

Model Model type Foraging hypothesis
ID
0 Null (bear ID) 1 selection for buffaloberry is random as bears move through their environment
91 bears will utilize resource patches of any quality when they encounter them
1 no focus on patch quality or encounter probability
1 Elevation 1 selection for buffaloberry imfluenced by elevation because this affects fruiting phenolog
1 bears will utilize resource patches of any quality when they encounter them
1 no focus on patch quality or encounter probability
2 Density 1 bears willselect for higher quality resource patches
3 Proximity 1 bears will opportunistically utilize the closest resource patch to their current location
4 Proportion 91 bears will select for areas where the resource is more widespread
5 Variability 1 bears willselect for areas with greater variability in patch quality
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Table 3.2extended)Ten candidate foraging hypotheses (models) for grizzly bear selection of buffaloberry fruit resources for which

models were developed, tested, and ranked by AIC for both tirgopreng (Period 1) and fruit ripening periods (Period 2).

Model Model type
ID

Foraging hypothesis

6 Density +
Proximity

7 Variability +
Density

8 Variability +
Proximity

9 Heterogeneity
(both Proportion +
Variability)

bears will select for higher quality resource patches from those closest to their current |
bears will select for higher quality resource patches which become more identifiatdasn
of greater variability in patch quality

bears will select for areas with greater variability in patch quality and higher resource
accessibility

bears will select for areaghere the resource is more widespread and there is greater
variability in patch quality
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Table3.3 Full names of model variables and abbreviated codes used in descriptions of model structure for the ten candidate

foraging hypothese®r grizzly bear selection of buffaloberry fruit resources.

Variable name

Related foraging hypotheses

Variable code

Buffaloberry fruit density (fruit/9001)

Distance to nearest buffaloberry patch (m)
Proportion ofbuffaloberry (229 or 45 radius)
Buffaloberry fruit density standard deviation

Elevation (m)

Density
Proximity
Proportion; Heterogeneity

Variability; Heterogeneity

density
distance
proportion
SD

elev




Table3.4: Name and structure of the ten candidataging hypotheses (models) as tested and ranked by AIC for grizzly bear

selection of buffaloberry fruit resources during the-fiening period from July®li 31%' (Period 1) with most landscape variables

estimated at a 45/ spatial scafe

Model Model type Model name AIC A1l C Akaike Model structure
weight

ID

6  Density + Proximity  Density + Proximity + 31167.0 -0.0 0.987 density + distance + elev
Elevatiorf

9 Heterogeneity Heterogeneity (interaction) + 31175.7 8.7 0.013 proportiod * SD’ + eleV
Elevatiorf

8 Variability + Variability + Proximity 312279 60.9 6.02E14  SD + distance

Proximity

3 Proximity Proximity and Elevation 31239.6 72.6 1.68E16  distance * elev
(interaction)

4 Proportion Proportion + Elevatioh 31295.6 128.6 1.18E28  proportion + ele¥

7 Variability + Density  Variability and Density 31644.7 477.7 1.86E104  SD * density + eleV
(interaction) + Elevation

2 Density Density + Elevatioh 317289 561.9 9.47E123 density + ele¥

5 Variability Variability + Elevation 317714 604.4 5.64E132 SD + elev

1 Elevation Elevation 31773.8 606.8 1.70E132 elev + (1|bear ID)

0  Null (bear ID) Null (bear ID) 317784 611.4 1.68E133 (1|bear ID)

Sexcept fruit density which was estimated at ax88patial scale

Yestimated at a 45m spatial scale
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Table 3.5: Summary of variables for the most supported model describing grizzly bear selection

of buffaloberry fruit resources during the pipening period (Period 1) as tested by AIC.

Fixed Beta Standard Standardized Standard error of
effect coefficient error beta coefficient standardized
coefficient

Intercept -2.422 0.402 -1.745 0.398
Density 0.433 0.044 0.175 0.018
Distance 0.449 0.019 0.555 0.024
Elevation2 -0.270 0.030 -0.270 0.030
(scaled)
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Table3.6: Name and structure of the ten candidate foraging hypotheses (models) as tested and ranked by AIC for grizzly bear
selection of buffaloberry fruit resources during the fruit ripening period from AudfisS&ptember 15(Period 2) with most

landscape variables estimated at a-#b3patial scafe

Model Model type Model name AIC Al C Akaike Model structure
weight

ID J

9 Heterogeneity Heterogeneity (interaction ) + 42310.4 -0.0 1 proportiod * SD” +
Proportion and Elevation proportion * elev

8 Variability + Proximity Variability + Proximity 42561.6 251.1 2.97E55  SD + distance

6 Density + Proximity ~ Density + Proximity + 42827.9 517.5 4.26E113 density + distance + elév
Elevatiorf

7 Variability + Density  Variability and Density 42941.9 631.5 7.58E138 SD * density + elev
(interaction) + Elevation

5 Variability Variability + Elevation 42997.0 686.5 8.43E150 SD + elev

2 Density Density and Elevation 43118.6 808.2 3.17E176 density * elev
(interaction)

3 Proximity Proximity 43149.4 839.0 6.62E183 distance

4 Proportion Proportion and Elevation 43214.5 904.0 4.88E197  proportion * elev
(interaction)

1 Elevation Elevation 43283.3 972.9 5.62E212 elev + (1|bear ID)

0 Null (bear ID) Null (bear ID) 43295.7 985.2 1.16E214 (1|bear ID)

?except fruit density which was estimated at enB8patial scale
Yestimated at a 45m spatial scale
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Table3.7: Summary of variables for the most supported model desciiza)y bear selection

of buffaloberry fruit resources during the fruit ripening period (Period 2) as tested by AIC.

Fixed effect Beta Standard Standardized Standard error
coefficient error beta of standardized
coefficient coefficient
Intercept -1.584 0.340 -1.858 0.337
Proportion -1.503 0.063 -0.383 0.023
SD 0.003 0.007 0.449 0.034
Elevation (scaled) 0.125 0.029 -0.172 0.029
Proportion*SD 0.001 0.007 0.227 0.020
(interaction)
Proportion*Elevation -0.779 0.053 -0.277 0.019

(interaction)

Yvaluereported as 10 times larger than actual for tabular display
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Table3.8: Ranking of support for foraging hypotheses (models) during theganeing (Period
1) and fruit ripening periods (Period 2) as tested by AIC, and changes in rank bi/patitesis
from Period 1 to 2.

Model Model type Rank for Rank for Change in rank
ID Period 1 _ from Period 1 to 2
Period 2

9 Heterogeneity 2 1 +1

8 Variability + 3 2 +1
Proximity

6 Density + Proximity 1 3 -2

7 Variability + 6 4 +2
Density

5 Variability 8 5 +3

2 Density 7 6 +1

3 Proximity 4 7 -3

4 Proportion 5 8 -3

0 Null (bear ID) 9 9 0

1 Null (elevation) 10 10 0
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Table 3.9: Name and structure of the ten candidate foraging hypotheses (models) from the buffaldbeyening period as tested

and ranked by AIC to explain buffaloberry shrub presence at grizzly bear GPS locations.

Model Model Type Model Name AIC Al C  Akaike Model Structure
ID weight
5 Variability Variability + Elevation + Time 110.0 -0.0 0.355 SD’ + elev + time
7 Variability + Variability and Density (interaction) 110.7 0.7 0.252 SD * density + elev +
Density + Elevation + Time time
1 Elevation Elevation 111.6 1.6 0.161 elev+ (1|bear ID)
9 Heterogeneity Heterogeneity (interaction) + Time 113.3 3.3 0.067 proportiod * SD + time
- Elevation + Time Elevation + Time 113.6 3.6 0.060 elev + time+ (1|bear ID)
0 Null (bear ID) Null (bear ID) 114.1 4.1 0.045 (1|bear ID)
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Table 3.9 (extended): Name and structure of theaadidate foraging hypotheses (models) from the buffaloberry fruit ripening
period as tested and ranked by AIC to explain buffaloberry shrub presence at grizzly bear GPS locations.

Model Model Type Model Name AIC A1l C Akaike weight Model Structure
ID
- Null (bear ID) + Null (bear ID) + Time 116.0 6.0 0.017 (1|bear ID) + time
Time
2 Density Density and Elevation (interaction) 116.4 6.4 0.014 density * elev +
+ Time time
8 Variability + Variability + Proximity + Time 116.5 6.5 0.014 SD +distance +
Proximity time
4 Proportion Proportion + Time 117.6 7.6 0.008 proportion + time
3 Proximity Proximity + Time 117.9 7.9 0.007 distance + time

Sestimated at a 3M spatial scale
Yestimated at a 45m spatial scale
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Table3.10: Summary of variables for the most supported model from the buffaloberry fruit
ripening period describing buffaloberry shrub presence at grizzly bear GPS locations as tested by

AlC.

Fixed Beta Standard Standardized Standard error of
effect coefficient error beta coefficient standardized beta
coefficient
Intercept 1.995 1.347 -0.958 0.265
Time 0.011 0.018 0.165 0.273
SD 0.004 0.001 0.888 0.298
Elevation -0.003 0.001 -0.769 0.260
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Figure 3.1: Boundary of the study area southeast of Hinton, Alpest® A2 4 6 4 1 0 N
W), as defined by the extent of a buffaloberry fruit density model developed by Nielsen
(2016) and predicted fruit density values for the region.
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Figure3.2: Predicted effect of distance to the nearest buffaloberry patch (m) on the relative

probability of grizzly bear use (selection) of a site.
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Figure 33: Predicted effect of buffaloberry fruit density (fruit’908)ron the relative probality

of grizzly bear use (selection) of a site.
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Figure 34: Predicted effect of elevation (m) on the relative probability of grizzly bear use
(selection) of a site.
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