Detecting changes in understory and canopy vegetation cycles in West Central Alberta using a fusion of Landsat and MODIS

Cameron J.R. McClelland¹

Nicholas C. Coops¹

Ethan E. Berman¹

Sean P. Kearney¹

Scott E. Nielsen²

A. Cole Burton³

Gordon B. Stenhouse⁴

¹Integrated Remote Sensing Studio (IRSS), Department of Forest Resource Management, 2424 Main Mall, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/AVSC.12466

This article is protected by copyright. All rights reserved
2Applied Conservation Ecology Lab, Department of Renewable Resources, Faculty of Agriculture, Life, and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada;

3Wildlife Coexistence Lab, Department of Forest Resource Management, 2424 Main Mall, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada

4fRI Research, 1176 Switzer Drive, Hinton, Alberta T7V 1V3, Canada

(*) corresponding author, Email: cammcclell@gmail.com

Abstract

Aims: To model regional vegetation cycles through data fusion methods for creating a 30-m daily vegetation product from 2000-2018 and to analyse annual vegetation trends over this time period.

Location: The Yellowhead Bear Management Area, a 31,180-km² area in west central Alberta, Canada.

Methods: In this paper, we use Dynamic Time Warping (DTW) as a data fusion technique to combine Landsat 5, 7 and 8 satellite data and Moderate Resolution Image Spectroradiometer (MODIS) Aqua and Terra imagery, to quantify daily vegetation using Enhanced Vegetation Index (EVI) at a 30-m resolution, for the years 2000-2018. We validated this approach, entitled DRIVE (Daily Remote Inference of VEGetation), using imagery acquired from a network of ground cameras.
Results: When DRIVE was compared to start and end of season dates (SOS and EOS respectively) derived from ground cameras, correlations were $r = 0.73$ at SOS and $r = 0.85$ at EOS with a mean absolute error (MAE) of 7.17 days at SOS and 10.76 days at EOS. Results showed that DRIVE accurately increased spatial and temporal resolution of remote sensing data. We demonstrated that SOS is advancing at a maximum rate of 0.78 days per year temporally over the 18 year time period for varying elevation gradients and land cover classes over the region.

Conclusions: With DRIVE, we demonstrate the utility of DTW in quantifying vegetation cycles over a large heterogeneous region, and determining how changing climate is affecting regional vegetation. DRIVE may prove to be an important method to determine how carbon sequestration is varying within fine scale individual plant communities in response to changing climate and likely be beneficial to wildlife movement and habitat selection studies examining the varying response of wildlife species to changing vegetation cycles under shifting climatic conditions.

Key Words: Vegetation cycles, remote sensing, fusion, Landsat, MODIS, Dynamic Time Warping, DRIVE, Daily Remote Inference of Vegetation, time series, 30m resolution

Introduction

1. Ecological Importance of Vegetation Events

The timing and distribution of recurring events in vegetation dynamics, such as green-up, flowering, fruiting and senescence, are bottom-up drivers for many ecosystem processes. The development of vegetative food resources which occur on a landscape seasonally, and annually, have been shown to be key drivers for wildlife movement and habitat selection (Nijland et al., 2013), while monitoring the variations of vegetation cycles has provided a basis to define the progression of climate change (Brown et al., 2016). Furthermore, carbon sequestration in vegetation is known to be influenced positively by growing season length (Keenan et al., 2014). The timing of vegetative cycles is essential in determining how vegetation
is changing seasonally and annually, however, a lack of precise information on the timing and spatial distribution of vegetative events currently limits our ability to incorporate vegetative cycles into ecological and climatic modeling.

Vegetative cycles are complex and species-specific (Uemura, 1994), driven by regional climate variables, such as temperature and precipitation, coupled with localized processes such as snow-melt and over-story structures (Nijland, Bolton, Coops, & Stenhouse, 2016). Climate change is affecting canopy and understory vegetation cycles and timing of key events such as green-up and senescence of vegetation (Beaubien & Hamann, 2011) and conceivably in different ways with canopy vegetation cycles potentially being disconnected to the understorey species due to variations in temperature, and growing season length and moisture availability. Average start of the growing season has shifted globally; for example, in the boreal forest, an advancement of green-up by 2 to 14 days per decade has been reported (Delbart et al., 2008; Ma, Pitman, Lorenz, Kala, & Srbinovsky, 2016). Trophic mismatches - where the timing of repeated life cycle phases for interacting species are changing at different rates - are occurring due to climate change and across many species including, plants, birds, mammals and insects (Renner & Zohner, 2018). For example, Roe deer across Europe rely on timing birth with green-up to take advantage of the entire growing season. Green-up and birthing events are becoming misaligned as green-up is beginning earlier, creating a trophic mismatch where newborns are not able to acquire as much nutrition reducing their survival rates (Plard, Gaillard, Coulson, Hewison, & Delorme, 2014). In Western Canada, with the changing climate, berry ripening is occurring earlier and creating a potential trophic mismatch that would require grizzly bears (Ursus arctos), who rely heavily on berries for hibernation, to obtain nutrition from other sources prior to den entry (Laskin et al., 2019). In order to derive annual and seasonal vegetation patterns, and facilitate predictive models of climate change and wildlife habitat selection and movement patterns, vegetation must first be quantified at a regional scale and with a fine spatial and temporal resolution.

2. Remote Monitoring of Vegetation Events
Changes in green-up and senescence of vegetation can be monitored using a variety of techniques at a range of spatial scales. Ground-based field surveys is the most common and for which the longest historical data archive is available (Schwartz, 2003). This involves establishing permanent plots and revisiting them at set intervals to record the vegetative and reproductive phase of plants. This technique has been widely used throughout Europe, Asia and North America (Beaubien & Hamann, 2011) and in some cases historical records exist dating back centuries (European Phenology Record) or even a millennium (Kyoto cherry blossom records) (Aono & Kazui, 2008). With ground-based observations, vegetation data are gathered at fine spatial scales, however observations are limited to present species at discrete points in time (often with large temporal gaps) and for individual point locations. Therefore, it is difficult to gain landscape perspectives (White et al., 2005).

Recording of vegetation phases using time-lapse photography allow researchers to obtain vegetation changes at a fine temporal resolution with comparable spatial scales to ground based field observations. It also allows objective capture of vegetation phases that can be analysed visually by users or by automatic algorithms. Networks of cameras can be established on a seasonal (Nijland et al., 2013) or permanent basis (The Phenocam Network) (Richardson et al., 2018) and have been shown to be useful for tracking green-up and senescence of key vegetative food species (Bater et al., 2011; Laskin, 2017; Nijland et al., 2013). Despite their high temporal resolution and accuracy, time-lapse photography still lack of spatially explicit information to measure vegetation cycles continuously in space and time.

Satellite-based remote sensing techniques have been used intensively for the past three decades to describe vegetation cycles spatially by means of dense temporal spectral vegetation indices. Indices such as the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) incorporate reflectance of the visible and near infrared portions of the electromagnetic spectrum to monitor vegetation (Huete et al., 2002a). Space-borne sensors enable the monitoring of vegetation data across broad spatial scales and are able to acquire data for remote regions inaccessible to ground based methods. (Zhang et al., 2003). While these sensors typically cannot achieve the same fine spatial (species level) resolution possible with
ground or camera-based techniques, data can be combined with those from cameras to validate and exploit the key benefits of the two complementary approaches (Melaas, Friedl, & Zhu, 2013).

One of the most commonly used sensors is the Moderate Resolution Imaging Spectroradiometer (MODIS). For example, Beck et al. (2006) used daily NDVI derived from MODIS at 250m spatial resolution to fit a time series using a double logistic function to model high latitude vegetation cycles in northern Scandinavia. Soudani et al. (2008) used MODIS 250m EVI time series data fit to a double sigmoid function to model vegetation transition dates in comparison to ground camera data in French deciduous forests. While accurate at broad spatial scales when comparing MODIS to observed vegetation trends, a reoccurring challenge using MODIS observations is the lack of fine-scale spatial resolution, resulting in a failure to resolve small scale variation in heterogeneous landscapes (Coops et al., 2012; Hufkens et al., 2012).

The launch of Landsat with the Thematic Mapper™ instrument in 1984 allowed production of a 30-m spatial resolution EVI product every 16 days, however, this is often prolonged by cloud cover (Loveland & Dwyer, 2012; Wulder, Masek, Cohen, Loveland, & Woodcock, 2012) which has hampered vegetation studies. Studies have employed data mining techniques and the use of multi-year Landsat data to model regional vegetation and facilitate a finer temporal scale of observation (Fisher et al., 2006; Melaas et al., 2013; Nijland et al., 2016). Nijland et al. (2016) acquired Landsat data from 1984 to 2014 and used a double sigmoid function to interpolate regional annual vegetation cycles within western Alberta, Canada. Melaas et al. (2016) adapted these methodologies to incorporate a cubic spline function to interpolate annual transition dates and better portray seasonal vegetation cycles within heterogeneous forests. While these methods are able to accurately calculate important average annual transition dates at a regional scale, it is difficult to accurately depict annual changes as results are attributed to average change across a broad range of years rather than a single target year (Baumann, Ozdogan, Richardson, & Radeloff, 2017).

3. Data Fusion for Vegetation Monitoring
In order to model inter-annual change at moderate spatial scales more accurately one alternative is to fuse Landsat and MODIS data sets. Dynamic Time Warping (DTW) is a fusion technique that was first developed as a speech recognition algorithm (Sakoe & Chiba, 1978) and has been proven capable of determining patterns in corresponding remote sensing data sets (Baumann et al., 2017; Berman et al., 2018; Petitjean, Inglada, & Gançarski, 2012). It has the ability to increase temporal density of historic time series by shifting annual dates based on rule sets generated from complimentary datasets. Baumann et al. (2017) used DTW methods to fuse MODIS and Landsat EVI data sets to examine vegetation cycles at individual sites from 2000 – 2012 in Eastern USA. They determined that, compared to ground camera data, the DTW Landsat product was more accurate than MODIS alone at predicting transition dates. Berman et al. (2018) adapted these techniques to accurately assess inter annual change in regional snow-cover at a fine spatial scale with greater than 80% accuracy when compared to ground cameras. Results were further used to model grizzly bear response to varying snow conditions (Berman, Coops, Kearney, & Stenhouse, 2019). These proof-of-concept studies highlight the opportunity to use dynamic time warping to model vegetation dynamics over a large region at a fine spatial scale.

Here, we examine vegetation trends over a large mountainous and forested region in Western Alberta, Canada, by fusing MODIS and Landsat imagery using DTW and spline curve fitting. The new method, which we term Daily Remote Inference of Vegetation (DRIVE), is used to derive a 30 m daily vegetation product from 2000 - 2018. In addition, we use the DRIVE product to determine how vegetation transition dates have varied through time across elevation and land cover classes to determine the overall effect of climate change across the landscape. While we expect there will be a general trend towards earlier green-up dates, we hypothesize that the degree of this change will vary by elevation and land cover classes with larger variations occurring at lower elevations and within open habitat such as shrub and herbaceous areas as these will be more accurately analysed via satellite. Ultimately, we provide a product to enable the analysis of how vegetation cycles are changing seasonally and annually under a changing climate and the effects on different plant and wildlife communities.
Study Area

We conducted this analysis within the Yellowhead Bear Management Area, over a 31,180-km2 area in west central Alberta (Figure 1). Jasper National Park defines the westernmost extent of the study area and is a protected mountainous region. To the east, the landscape shifts from mountainous to rolling foothills. In the foothills, there are historic and ongoing anthropogenic disturbances in the form of recreation, oil and gas extraction, coal mining and forestry operations. There are four natural subregions in the Yellowhead area: alpine, subalpine and upper/lower foothills (Achuff, 1994). The most common tree species in the area is *Pinus contorta* (lodgepole pine). Other common tree species include *Picea mariana* (black spruce), *Picea glauca* (white spruce), *Populus tremuloides* (trembling aspen), *Populus balsamifera* (balsam poplar) and *Abies balsamea* (balsam fir). Understory species in this area include, graminoids and forbs such as *Trifolium* spp., *Heracleum lanatum*, *Taraxacum officinale* and *Equisetum* species. Berry species such as *Vaccinium myrtilloides*, *Vaccinium membranaceum* and *Shepherdia canadensis* are plentiful throughout the study area and become available during late summer into early fall (Munro, Nielsen, Price, Stenhouse, & Boyce, 2006).

Methods

1. Data

1.1 MODIS Data

A total of 1624 500 m spatial resolution MODIS V6 MOD13A1 and MYD13A1 images were downloaded from both Aqua and Terra platforms from January 1st, 2000 to December 30th, 2018 for tiles H10V03 and H11V03. MOD13A1 and MYD13A1 EVI products consist of 16 day composites of the highest quality vegetation index data for that period (Huete et al., 2002b). When coupled, these datasets produce a composite every 8 days. MODIS EVI data and corresponding pixel assurance data from both AQUA and TERRA sensors were extracted and stacked separately in 8-day intervals annually from day 1 - 365. Pixels were masked to extract only the highest quality, clear-sky data, based on quality assurance datasets (Didan, Munoz, Solano, & Huete, 2015).
1.2 Landsat Data

Preprocessed 30-m resolution Landsat EVI data products for Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) sensors and corresponding pixel quality assurance were acquired from the USGS archive (https://earthexplorer.usgs.gov/) for January 1st, 2000 to December 31st, 2018. Two WRS-2 tiles (path/rows: 43/23, 43/24) cover the study area and 1186 images were subsequently downloaded from the USGS website for both tiles. Images were masked using corresponding pixel quality assurance values. For TM, ETM+ and OLI sensors, only pixels with corresponding clear pixel quality assurance (1, 66, 130 for TM and ETM+ and 1, 322, 386, 834, 898, 1346 for OLI) were used. This eliminated pixels containing cloud, cloud shadow, snow/ice and water from the analysis following methods of Melaas et al. 2013, 2016 and Nijland et al, 2016.

While EVI data ranges from 0 – 1 both Landsat and MODIS multiply raw EVI values by 10000 to transform to integer data. These values were not altered in this analysis.

1.3 Camera Data

Digital time-lapse cameras were used to acquire daily vegetation ground data throughout the growing seasons of 2009, 2010 and 2018. Cameras were installed at 17 locations along an elevation gradient and set up with a wide field of view (FOV) to capture the surrounding areas and trends in canopy and understory vegetation for each site (Figure 2A) (Vartanian et al., 2014). Sites selected in 2018 were generally open (non-forested) to allow better detection of variations in understory vegetation, while sites in 2009 were selected with canopy cover (forested). In 2010, sites were a mix of locations with and without canopy cover. Understory plant communities across these sites were therefore a mixture of grasses, forbs and shrubs and were of varying species compositions. Camera models varied depending on the year data were collected, however spatial resolution of the camera images was similar (Table 1). Cameras were mounted on trees, between 2 and 3 m above ground level with varying directions.
of observation for each site with an average spatial extent between 30 and 60 m. Between 3 and 5 time-lapse images were captured daily between 11:00h and 13:00h at half-hour to hourly intervals (Figure 2A.) and images were stored on memory cards.

Start and end of season dates were derived using the Phenopix package (Filippa et al., 2016) in R statistical software (R Core Team, 2018). Regions of interest (ROIs) were drawn to capture vegetation over the entire FOV (Figure 2B). RGB index values were extracted as an average over the entire ROI for each site (Figure 2C). Green Chromatic Coordinates (GCC) were calculated using Equation 1 and values were filtered at three levels to remove outliers. The first filter was the night filter, which used brightness values to

\[
GCC = \frac{GI}{RI + BI + GI}
\]

eliminate points occurring under conditions of low light caused by clouds and shadows. The second was the spline filter, which is based on recursive spline smoothing and residual computation, thereby removing all values that did not lie within a certain residual envelope (Migliavacca et al., 2011). Thresholds used were 2 standard deviations below and 1.5 standard deviations above mean GCC values. The third filter used was the max filter which identifies 90th percentile residual values in a three day moving window (Sonnentag et al., 2012) (Figure 2D). Cubic splines were fit for each time series of images (Figure 2D.).

1.4 Land Cover and Digital Elevation Model Data

We analyzed how vegetation cycles changed under differing land cover types and across elevation gradients from 2000 - 2018. Land cover classes were derived from Hermosilla et al. (2015), who produced a 30 m spatial resolution Landsat-derived land cover map of the region in 2016, which included six classes: bryoids, broadleaf, coniferous, herbs, mixed wood and shrubland. A 30 m digital elevation model (DEM) was obtained from the Shuttle Radar Topography Mission (SRTM) (Farr et al., 2007) which we reclassified into elevation classes in increments of 200 m from 500 – 2100 MASL.

2. Dynamic Time Warping
Dynamic Time Warping (see Figure 3) involves first creating a rule set from MODIS data and then fitting curves to a time series of values – in this case EVI – as follows (also see Baumann et al., 2017, Berman et al., 2018).

First, annual vegetation curves were created per pixel using the stacked preprocessed MODIS EVI data, where the band order corresponded to day of year (DOY) from 1 to 365. MODIS EVI data values were spatially smoothed using a 3 x 3 low pass filter to eliminate spatial noise. Results were calculated with 50% weighting on the center pixel and 50% on the neighbourhood (Berman et al., 2018). Annual vegetation curves were then obtained through cubic spline interpolation (Melaas et al., 2016) and these were further smoothed using a Gaussian filter with a sigma value of 4. Linear interpolation was implemented if a temporal gap between values exceeded 8 days, to avoid extreme values (Berman et al., 2018).

Second, rulesets between query years and target years were generated. To accomplish this we first defined an annual curve as the target year. All other years consequently became known as the query years. All query years were individually warped to each target year using a 365 by 365 matrix with each cell containing the Euclidean distance between target and query year MODIS EVI values (Baumann et al., 2017; Berman et al., 2018). Theoretically, the warp path possibilities are exponentially high, however a rule set was generated based on the path which minimized the Euclidean distance between target and query MODIS EVI, with curves starting at day of the year 1 and ending at day 365. The algorithm used a 50-day window in which to restrict the resultant rule sets such that if observations were greater than 50 days apart, a rule set was not able to form a relation (Berman et al., 2018). This second step was repeated until all years have become a target year generating a rule set for every year.

In the final step, Landsat EVI observations were rearranged based on generated rule sets. All query year Landsat EVI observations contained within each MODIS pixel were rearranged to fit with target year observations. Target year observations were not rearranged as they signify real values. In situations where multiple values were warped to a same day of year, the mean of all values for that day was used (Berman et al., 2018). Landsat EVI vegetation curves were created for every year by iteratively generating rulesets with that year becoming the target year.
and having all other years (query years) warped to said target year. Observations for each year were interpolated using similar parameters as in interpolation of MODIS EVI, however the key difference being that the sigma value in the Gaussian filter used for Landsat EVI was increased to 13 (determined by parameter tuning). This increased smoothing on all spline curves reducing noise and aided in comparing Landsat EVI to ground camera data (see Figure 4 for an example). This technique and the resultant product is hereby known as DRIVE.

3. Validating DRIVE

3.1 Seasonal Metrics

To compare DRIVE to ground camera data, determine accuracy of DRIVE in relation to MODIS data, and assess how vegetation cycles varied inter-annually, seasonal metrics were extracted from the ground cameras, DRIVE, and MODIS curves. Seasonal metrics were used the bridge the gap between GCC and EVI values as while their numerical values are not comparable their trends are (see Melaas et al., 2016 for example). Previous methods utilize inflection points to define start of season (SOS) and end of season (EOS) (Beck et al., 2006), however the inability to define inflection points within a cubic spline make this method non feasible. In this study SOS and EOS were calculated by splitting vegetation curves into two sections at the seasonal maximum. Minimum values were then calculated before and after the seasonal maximum to define the lower extent of the range of values before and after seasonal maximum. The DOY (day of year) value corresponding to the half-maximum (50 percent of seasonal maximum) values prior to seasonal maximum are designated as the SOS date and the DOY value corresponding to the half-maximum post seasonal maximum are designated as the EOS date.

3.2 Accuracy

In order to ensure accuracy of DRIVE, SOS and EOS dates were compared to those derived from the 17 ground camera sites. We also compared the ground camera data to the original MODIS product used within the warp to quantify improvements in accuracy due to increased spatial resolution (from 500 m to 30 m). Correlation coefficients (r) and Root Mean Squared Error (RMSE) were used to assess accuracy, while root mean bias was used to
determine whether DRIVE and MODIS were over- or under-predicting SOS and EOS. Mean absolute error (MAE) was used to calculate the difference in days between ground cameras and DRIVE/MODIS results.

4. Change in Vegetation Cycles from 2000-2018

4.1 Start of Season and End of Season Layers

Dates of the start and end of the growing season were calculated from day 105 to 310 for each year to isolate green-up and senescence signals based on visual assessment and methods proposed by Nijland et al. (2016). For each time series of observations within this period a curve was extracted along with the half maximum and half minimum using the same process used to extract seasonal metrics. Results were masked for a) having an EVI amplitude of less than 1000 (equivalent to amplitude of 0.1 used in Nijland et al. (2016) as they were deemed to have little to no green-up and b) having non feasible SOS values considered to be outside the main growing season. (i.e., having a SOS less than day 125 or a SOS later than day 200) (Nijland et al., 2016).

We used random stratified sampling to extract vegetation SOS and EOS dates across elevation classes and land cover classes from 2000-2018. For each elevation and land cover class, 500 random points were generated and used to extract values from SOS and EOS layers. Random points were generated annually in the case of land cover classes to account for yearly changes. The mean of extracted values was calculated at every elevation and land cover class. To assess the statistical significance of the observed trend over a time, we used a Mann-Kendall trend test (de Beurs & Henebry, 2005). Slopes of trends were estimated using the Theil-Sen slope estimator.

Results

Using the daily coverage of DRIVE instead of the 16 day cover of Landsat increased the number of cloud free, snow free and good quality observations at our study sites from an average of 7.2 to 137.3 observations per year. This marked increase in average annual usable
observations allowed for the creation of a temporally dense time series capable of interpolating EVI values over the season.

1. Validation results

For 17 ground camera sites distributed over 3 years (Table 1) DRIVE SOS and EOS resulted in higher correlations (SOS: $r = 0.73$, RMSE = 10.3. EOS: $r = 0.85$ and RMSE = 13.0) than MODIS data alone (SOS: $r = 0.57$, coefficient RMSE = 15.1. EOS: $r = 0.76$, RMSE = 13.5) (Figure 5). Both DRIVE and MODIS underestimated the timing of SOS with a mean bias of -4.2 days for DRIVE and -9.7 days for MODIS. The MAE of SOS compared to ground camera data was 7.17 days using DRIVE and 10.35 days using MODIS. With EOS we found an over estimation in the DRIVE vegetation product, with a mean bias of 4.2, while there was less of an over estimation for MODIS with a mean bias of 1.1. The MAE between EOS calculated using DRIVE when compared to ground camera data and MODIS when compared to ground camera data was 10.76 and 11.35 days respectively.

2. Long-trend Vegetation cycle changes across land cover and elevation

We observed a significantly decreasing trend over the study period in average SOS for all elevation classes ($p < 0.05$) and for all land cover classes except for bryoids ($p = 0.624$) and mixed wood ($p = 0.058$). Using the Thiel-Sen slope estimator, the deepest trend slope occurred in elevation classes 700 – 900 m and 900 -1100 m with SOS beginning 0.78 days earlier per year. For land cover classes, the most drastic change occurred within the shrubland class with SOS beginning 0.71 days earlier per year (Figures 7 and 8).

Discussion

1. Dynamic Time Warping

Our results show that the DRIVE approach overcomes the inherent trade-off between coarse spatial resolution of MODIS data and the coarse temporal resolution of Landsat data. With Dynamic Time Warping (DTW) and DRIVE, we used MOD13A1 EVI data to characterize annual regional vegetation and form a basis for rearranging multi-year Landsat EVI imagery to
create a 30-m, daily vegetation product. Our methods make it possible to quantify seasonal and annual variability in vegetation across very large regions, historically for the past two decades. In the Yellowhead region of Canada we found DRIVE was able to increase the spatial resolution of MODIS data (at 500m) thus increasing accuracy in determining SOS and EOS dates at finer spatial scales than when using MODIS data alone when using high resolution ground cameras as validation. We were able to predict SOS within 7 days and EOS within 10 days of ground cameras with similar results being reported in Baumann et al. (2017) and Nijland et al. (2016). The better results for SOS compared to EOS may be related to the SOS signal being stronger than the EOS signal (Nijland et al., 2016) and may also relate to lower solar elevation and sun angle at EOS and there being a stronger signal from conifer species as sun cannot penetrate to the understory (Kobayashi et al., 2016). The correlation between DRIVE and ground camera data across 17 forested and non-forested sites with varying species composition displays its ability to capture spatial patterns in vegetation across our study area beyond simple elevation trends. Moreover, our results indicate that DRIVE is influenced by both over- and understory vegetation, dependent on land cover type. The fact that DRIVE detected SOS and EOS within open- and moderate-canopy conifer forests in our study area suggests the method is able to detect understory changes. In broadleaf forests, we suspect that the vegetation signals are more strongly influenced by over-story vegetation.

Previous work has shown the usefulness of DTW in quantifying annual vegetation cycles, however it was only done at point locations or over small areas and never over such a large time period (Baumann et al., 2017). Our study expands on this work and demonstrates the utility of DTW and DRIVE in quantifying vegetation dynamics across a large region and over 18 years. We further demonstrated the ability of DTW to describe floristically heterogeneous plant communities, whereas previous work with DTW in vegetation has been focused more narrowly in alpine environments and deciduous forests (Baumann et al., 2017; Huseby et al., 2005). We attribute this advance to the use of cubic splines within the interpolation process which provide a more natural fit and as a result better characterise differences between vegetation types (see Figure 6 for example) than in previous studies that characterized and constrained vegetation.
patterns using double sigmoid or double logistic functions (Baumann et al., 2017; Fisher et al., 2006; Melaas et al., 2013; Nijland et al., 2016). Cubic spline interpolation aided in smoothing data and eliminating noise while still preserving differences in vegetation trends between pixels and within individual communities. The use of cubic splines also helped in preserving SOS and EOS dates after snow and ice covered pixels were removed. We have confidence in the accuracy of using a spline fit based on the correspondence between the DRIVE-based vegetation curves for individual sites and those obtained from the ground camera data.

Baumann et al. (2017) highlighted a potential limitation of DTW in that accuracy was unknown within different land cover classes. We validated DRIVE across several different land cover classes (e.g. shrubland, mixed and conifer forest, cut-blocks) and showed that accuracies were similar across all land cover classes. However, visual inspection suggests DRIVE performed poorly at higher elevation sites, along forested sides of mountains and hills, in places with dense conifer canopy cover and in places with evergreen vegetation or understories, as indicated by pixels being excluded when creating SOS and EOS layers (Figure 9). These discrepancies are similar to ones experienced by Nijland et al. (2016). In cases where there is dense conifer or evergreen vegetation, little to no leaf-out is detected and a substantial EVI signal is observed as soon as these areas are snow free. What little leaf out that does occur is then negligible when combined with this initial signal, thus an earlier than feasible SOS date is detected. Similar processes may be at work along hill and mountainsides where vegetation isn’t being detected due to angle of observation and the inability of the sensor to observe understory vegetation through the canopy.

We compared DRIVE output to existing MODIS data outputs, as the MODIS satellite imagery is globally recognised vegetation product and one that is used in many global comparisons. MODIS EVI is the best available vegetation product, therefore we believe comparing field based data to MODIS EVI is reasonable despite heterogeneity of our fine scale sites. While we acknowledge that it is not possible to independently compare due to the use of MODIS EVI data in building the rule sets within the DTW algorithm, one possible approach would be to resample DRIVE output up to 500m and observe whether the resampled DRIVE
data is comparable to the initial MODIS data. Although not the focus of this study, additional tests such as this could be applied to give further confidence to the approach.

2. Inter-annual vegetation trends

Within this study, we quantified annual change in SOS dates throughout the past two decades and demonstrated that, overall, SOS is shifting earlier across all elevation and land cover classes except for bryoids and mixed wood forest. These results were significant and indicate a measurable effect of changing climate within our study area. At higher elevations and within conifer forests, trends were smaller with larger error than when compared to lower elevations and other land cover classes corresponding to warp inaccuracies in these classes. Similar climate-driven shifts in spring vegetation cycles have been reported in many studies throughout North America and the world (Beaubien & Hamann, 2011; Chmielewski & Rötzer, 2002; Chuine & Beaubien, 2001; Mark D. Schwartz, Ahas, & Aasa, 2006). By contrast, vegetation shifts at the end of the growing season were less apparent, likely due to a weaker and less abrupt end of season spectral signal.

A shift toward earlier spring green-up has important implications for plant communities, carbon sequestration, and wildlife whose foraging patterns follow seasonal vegetative food patterns. For example, earlier availability of vegetation may create a temporal mismatch between what food is available compared to what food is required in animal diets for that time of the year. There is evidence such mismatch is already occurring for some species, such as for grizzly bears foraging on *Shepherdia canadensis* (Laskin et al. 2019). Our results further show that similar spring advancement may be happening for other more important food species for grizzly bears and other wildlife species in the region. However due to poor EOS signal, it is unclear whether the growing season is shifting towards earlier dates or the length of the growing season is increasing. Future research is needed on the response of individual vegetative species to climate change in order to better understand the implications for wildlife diets as well as how carbon sequestration is varying within plant communities.

3. Conclusion
With the DRIVE algorithm and product, we were able to portray spatial and temporal vegetation patterns at a 30 m daily scale over a large region and improve upon annual detection of vegetation trends within a heterogeneous environment. We further demonstrated the usefulness of DRIVE through the creation of SOS and EOS metrics capable of quantifying two decades of changing vegetation cycles within varying elevation and land cover classes. We envision several key applications for DRIVE. Primarily DRIVE may be crucial in determining how carbon sequestration is varying amongst different plant communities. Next is in combining the vegetation dynamics with wildlife movement data in order to determine how changing vegetation is affecting wildlife species. Potential changes in animal food supply could result in new patterns of wildlife habitat use and migration. With a 30-m resolution, DRIVE could be used in determining how different industrial land management practices are affecting vegetation cycles locally and determine management strategies to protect key wildlife habitat. Such application of DRIVE to management practices could also be extended to recreational use (e.g. backcountry hiking, off-road vehicle use) in order to minimize the public’s impact on wildlife resources at sensitive times. As our ability to characterize fine-scale vegetation cycles in a changing climate improves, so can we improve our land use practices to more effectively manage both the natural and human environment.

Acknowledgements

This research was supported by the Grizzly-PAW project (NSERC File: CRDPJ 486175 – 15, Grantee: N.C. Coops, FRM, UBC), in collaboration with fRI Research and FRIAA, Alberta Newsprint Company, Canfor, Cenovus, Repsol, Seven Generations Energy, Shell Canada, TransCanada Pipelines, Teck Resources, West Fraser, Westmoreland Coal, and Weyerhauser. More information can be found at http://paw.forestry.ubc.ca/. We thank staff at fRI research and Bethany Parsons of the University of British Columbia for help in collecting vegetation data.

Author contributions

All authors contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.
Data accessibility

All MODIS and Landsat data is free and open source from the USGS archive (https://earthexplorer.usgs.gov/). All plot level ground data is stored at UBC and may be available upon request.

Bibliography

Munro, R. H. M., Nielsen, S. E., Price, M. H., Stenhouse, G. B., & Boyce, M. S. (2006). Seasonal and

This article is protected by copyright. All rights reserved
Diel Patterns of Grizzly Bear Diet and Activity in West-Central Alberta Author (s): R. H. M. Munro, S. E. Nielsen, M. H. Price, G. B. Stenhouse and M. S. Boyce Published by: American Society of Mammalogists, 87(6), 1112–1121.

https://doi.org/10.1111/avsc.12000

https://doi.org/10.1109/TGRS.2011.2179050

https://doi.org/10.1109/AMTRSI.2005.1469875

Schwartz, Mark D., Ahas, R., & Aasa, A. (2006). Onset of spring starting earlier across the

Table 1: Ground Camera Site Details located in UTM zone 11 and Landsat tile P44R23. Sites were distributed along elevation gradients capturing a variety of key understory food species within the study area.

<table>
<thead>
<tr>
<th>Site</th>
<th>Year</th>
<th>Easting</th>
<th>Northing</th>
<th>Elevation</th>
<th>Camera Type</th>
<th>Modis Tile</th>
<th>Site Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hwy 40</td>
<td>2018</td>
<td>5882405</td>
<td>470929</td>
<td>1620</td>
<td>Wingscapes TimelapseCam Pro</td>
<td>H10V03</td>
<td>Non-Forested</td>
</tr>
<tr>
<td>Pond</td>
<td>2018</td>
<td>5882302</td>
<td>489235</td>
<td>1371</td>
<td>Wingscapes TimelapseCam Pro</td>
<td>H10V03</td>
<td>Non-Forested</td>
</tr>
<tr>
<td>Huck</td>
<td>2018</td>
<td>5885343</td>
<td>501512</td>
<td>1366</td>
<td>Wingscapes TimelapseCam Pro</td>
<td>H10V03</td>
<td>Non-Forested</td>
</tr>
<tr>
<td>Hi</td>
<td>2018</td>
<td>5887658</td>
<td>504729</td>
<td>1318</td>
<td>Wingscapes TimelapseCam Pro</td>
<td>H10V03</td>
<td>Non-Forested</td>
</tr>
<tr>
<td>Swamp</td>
<td>2018</td>
<td>5889402</td>
<td>505988</td>
<td>1257</td>
<td>Wingscapes TimelapseCam Pro</td>
<td>H10V03</td>
<td>Non-Forested</td>
</tr>
<tr>
<td>Cow</td>
<td>2018</td>
<td>5892997</td>
<td>501705</td>
<td>1252</td>
<td>Reconyx PC800</td>
<td>H10V03</td>
<td>Non-Forested</td>
</tr>
<tr>
<td>B2m</td>
<td>2018</td>
<td>5887995</td>
<td>500568</td>
<td>1247</td>
<td>Wingscapes TimelapseCam Pro</td>
<td>H10V03</td>
<td>Non-Forested</td>
</tr>
<tr>
<td>Rig</td>
<td>2018</td>
<td>5899801</td>
<td>517637</td>
<td>1161</td>
<td>Wingscapes TimelapseCam Pro</td>
<td>H11V03</td>
<td>Non-Forested</td>
</tr>
<tr>
<td>Plant</td>
<td>2018</td>
<td>5897700</td>
<td>512533</td>
<td>1121</td>
<td>Wingscapes TimelapseCam Pro</td>
<td>H11V03</td>
<td>Non-Forested</td>
</tr>
<tr>
<td>Low</td>
<td>2018</td>
<td>5916659</td>
<td>516847</td>
<td>998</td>
<td>Wingscapes TimelapseCam Pro</td>
<td>H11V03</td>
<td>Non-Forested</td>
</tr>
<tr>
<td>Cardinal Divide</td>
<td>2010</td>
<td>5860769</td>
<td>483439</td>
<td>2025</td>
<td>Pentax K100D</td>
<td>H10V03</td>
<td>Non-Forested</td>
</tr>
<tr>
<td>Drinnan Creek</td>
<td>2010</td>
<td>5894401</td>
<td>465076</td>
<td>1356</td>
<td>Pentax K100D</td>
<td>H10V03</td>
<td>Forested</td>
</tr>
<tr>
<td>Cadomin Mixed</td>
<td>2009</td>
<td>5877276</td>
<td>478427</td>
<td>1484</td>
<td>Pentax K100D</td>
<td>H10V03</td>
<td>Forested</td>
</tr>
<tr>
<td>Cadomin Conifer</td>
<td>2009</td>
<td>5879755</td>
<td>480660</td>
<td>1458</td>
<td>Pentax K100D</td>
<td>H10V03</td>
<td>Forested</td>
</tr>
<tr>
<td>Bryan Spur Mixed</td>
<td>2009</td>
<td>5899684</td>
<td>502319</td>
<td>1093</td>
<td>Pentax K100D</td>
<td>H11V03</td>
<td>Forested</td>
</tr>
<tr>
<td>Fickle Lake Mixed</td>
<td>2009</td>
<td>5916668</td>
<td>519136</td>
<td>970</td>
<td>Pentax K100D</td>
<td>H11V03</td>
<td>Forested</td>
</tr>
<tr>
<td>Fickle Lake Conifer</td>
<td>2009</td>
<td>5916058</td>
<td>518537</td>
<td>951</td>
<td>Pentax K100D</td>
<td>H11V03</td>
<td>Forested</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved
Figure 1: Study Area located in Western Alberta, Canada, showing study area extent and ground camera locations.
Figure 2: Ground camera extraction process: A) an example of imagery before (left) and after (right) start of season (SOS) from five example sites within this study, B) an example of a region of interest from which values will be extracted, C) an example of the red/green/blue index values extracted by the Phenopix package which will be used to calculate GCC (Green Chromatic Coordinates), D) the output of the filtering process with max filter (dark red being values) ultimately used with a cubic spline fit to the data and SOS and end of season (EOS) dates extracted.
Figure 3: Dynamic time warping steps. 1) Define target and query years, 2) Apply DTW algorithm and create the rule set to inform the warp. 3) Rearrange Landsat Enhanced Vegetation Index (EVI) based on generated rule set and fit a spline to interpolate curve with rearranged values.
Figure 4: Example of warped results from Cow camera site. (TOP) MODIS Enhanced Vegetation Index (EVI) from target year (2018) is interpolated. In greyscale are all corresponding query years. (MIDDLE) Example of all query years post application of the warping algorithm being warped to said target year. (BOTTOM) Results of rule set generated from warping algorithm being applied to Landsat EVI and then interpolated using a cubic spline.
Figure 5: Comparison of results between Drive as compared to ground camera start of season (SOS) and end of season (EOS) and MODIS as compared to ground camera SOS and EOS and EOS. DOY represents day of year.
Figure 6: Comparison of ground camera vegetation curves green chromatic coordinates (GCC) to DRIVE vegetation curves Enhanced Vegetation Index (EVI) at four sites. A) Hwy 40, B) Plant, C) Drinnan Creek, D) Fickle Lake Conifer.
Figure 7: Average day of start of season (SOS) per year across 6 elevation classes with error bars representing one standard deviation from the mean.
Figure 8: Average day of start of season (SOS) per year across 6 land cover classes with error bars representing one standard deviation from the mean.
Figure 9: Start of season (SOS) layers per year from 2010 (top left corner) proceeding across and down ending with 2018 (bottom right corner). Bottom panel represents the extent of view within the study area. Note: absent pixels are where warp did not perform well or accurately.