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A major unresolved question for omnivorous carnivores, like most species of bears, is to what degree are populations 
influenced by bottom–up (food supply) or top–down (human-caused mortality) processes. Most previous work on bear 
populations has focused on factors that limit survival (top–down) assuming little effect of food resource supply. When food 
resources are considered, most often they consider only the availability/supply of a single resource, particularly marine-
subsidized or terrestrial sources of protein (carnivory) or alternately hard or soft mast (frugivory). Little has been done to 
compare the importance of each of these factors for omnivorous bears or test whether complementary resources better 
explain individual animal and population measures such as density, vital rates, and body size. We compared landscape 
patterns of digestible energy (kcal) for buffaloberry (a key source of carbohydrate) and ungulate matter (a key source 
of protein and lipid) to local measures in grizzly bear Ursus arctos abundance at DNA hair snag sites in west-central 
Alberta, Canada. We tested support for bottom–up hypotheses in either single (carnivory [meat] versus frugivory [fruit]) 
or complementary (additive or multiplicative) food resources, while accounting for a well-known top–down limiting factor 
affecting bear survival (road density). We found support for both top–down and bottom–up factors with complementary 
resources (co-limitation) supported over single resource supplies of either meat or fruit. Our study suggests that the 
availability of food resources that provide complementary nutrients is more important in predicting local bear abundance 
than single foods or nutrients (e.g. protein) or simply energy per se. This suggests a nutritionally multidimensional bottom–
up limitation for a low density interior population of grizzly bears.

Ecologists have long debated how the abundance and 
distribution of organisms are regulated and limited 
(Hairston et al. 1960, Power 1992, Terborgh et al. 2001). 
Since ecosystems are structured by the amount of energy 
and nutrients transferred from primary producers through 
the food chain, many have focused on trophic interactions 
as primary regulators of ecosystem processes and popula-
tion dynamics. One school of thought holds that food 
resources are the primary regulatory control (bottom–up 
regulation) via competition whereas others consider preda-
tion (top–down limitations) to be more important. Perhaps 
more realistic is that ecosystems may be simultaneously 
regulated by both bottom–up and top–down factors which 
differ in their relative strengths among ecosystems and state 
conditions (Oksanen et al. 1981, Leibold 1989, Hunter and 
Price 1992).

Large apex predators were not historically thought of 
being controlled by top–down processes given their high 
trophic position. However, humans are now the global 
super-predator affecting the distribution and abundance of 
apex predators across freshwater, marine and terrestrial eco-
systems (Estes et al. 2011). In North America, the grizzly 
(brown) bear Ursus arctos is an omnivorous apex-predator 

(carnivore) that has been extirpated from much of its 
historical range due to persecution and habitat loss (Mattson 
and Merrill 2002). Human-caused mortality (top–down) is 
often considered the most important factor regulating grizzly 
bear populations (Boyce et al. 2001). However, bottom–up 
factors should not be overlooked given that they are known 
to influence grizzly bear vital rates (Mattson et al. 1992, Pease 
and Mattson 1999), population density (Hilderbrand et al. 
1999, Pease and Mattson 1999, McLellan 2011), geographic 
distribution (Mattson and Merrill 2002, Bojarska and Selva 
2012), habitat use (Nielsen et al. 2003, 2010), and fitness 
proxies of body size (McLellan 2011, Nielsen et al. 2013, 
Erlenbach et al. 2014) and body fat percentage (Robbins 
et al. 2012). Top–down and bottom–up factors may also be 
interactive supporting the suggestion that both factors can 
be simultaneously important. For instance, human-caused 
mortality in bears increases when food availability is low 
(especially during the hyperphagic period) as bears may seek 
anthropogenic food sources (Mattson et al. 1992, Pease and 
Mattson 1999, Gunther et al. 2004), or when bears forage in 
areas associated with humans, such as attractive sinks (sensu 
Nielsen et al. 2006, Northrup et al. 2012). A productive and 
nutritious natural supply of food can thereby mitigate the 

© 2016 The Authors. Oikos © 2016 Nordic Society Oikos
Subject Editor: James Roth. Editor-in-Chief: Dries Bonte. Accepted 20 July 2016

Oikos 126: 369–380, 2017 
doi: 10.1111/oik.03144



370

effects of human-caused mortality in bears. This may be why 
grizzly bears in some populations experiencing high levels of 
human-caused mortality still maintain high local population 
density (Mowat et al. 2005, McLellan 2011).

When bottom–up resources are considered for bears, 
often the focus is limited to individual resources such as 
meat (Hilderbrand et al. 1999) or fruit (McLellan 2011). 
Although meat availability is commonly considered a major 
factor affecting local population size in bears (Hilderbrand 
et al. 1999), McLellan (2011) demonstrated that much of 
the positive relationship observed between bear density and 
the amount of meat in a diet was due to the presence of 
salmon (marine subsidized resources). In fact, when popu-
lations with access to salmon were removed, the relation-
ship between bear density and amount of meat in the diet is 
negative (McLellan 2011), not positive as what it is typically 
assumed. This suggests that other resources, such as fruit, 
may be important determinants of interior populations of 
grizzly bears (McLellan 2011).

However, simply focusing on one resource or nutritional 
parameter (e.g. meat) may not be sufficient to resolve these 
complexities, especially for species like bears with omnivo-
rous diets. There is a growing recognition of the multidimen-
sional nature of animal nutrition, particularly for nutrient 
interactions since there is evidence that animals require a 
balanced intake of nutrients from foods in order to opti-
mize their performance (Simpson and Raubenheimer 2012). 
Indeed, the macronutrients (proteins, carbohydrates, and 
lipids) required for energy provisioning, as well as other pur-
poses (e.g. lipids for cell membranes, and protein for lean 
mass), are a driving force behind food selection and foraging 
behaviour in wild animals (Rothman et al. 2011), likely also 
including strict predators (reviewed by Kohl et al. 2015).

Studies of macronutrient self-selection in captive bears 
demonstrate that animals choose diets varying in protein to 
non-protein (lipid and carbohydrate) energy in proportions 
that optimize their energy intake and maximize mass gain 
(Erlenbach et al. 2014). In the wild, macronutrients available 
to bears are often found in variable environments among a 
diverse range of potentially complementary foods that vary 
in availability and nutrient content across both time and 
space (Nielsen et al. 2010, Mowat et al. 2013, Coogan et al. 
2014). Bears must therefore forage across “complimentary 
landscapes” (Dunning et al. 1992) to obtain high quality 
food resources. Two foods can be considered complemen-
tary when they provide an animal with a blend of nutrients 
not found in either food alone, and that allow the animal to 
consume an optimal level of nutrients. Bears in captive trials 
preferred high lipid intake over carbohydrate when mixing 
their diets; however, in the absence of lipids bears consumed 
carbohydrates to reach the same preferred ratio of protein 
to non-protein energy (Erlenbach et al. 2014). Given the 
variable nature of environmental conditions and spatial pat-
terns of resources available to grizzly bears, wild bears may be 
limited in their ability to consume complementary resources 
reaching optimal diets (Coogan et al. 2014) thereby limiting 
individual fitness and population abundance.

The purpose of this paper is to test whether local pat-
terns in the abundance of an ‘interior’ grizzly bear popula-
tions (i.e. without access to marine resources) is co-limited 
by the distribution and abundance of two food resources 

– fruit and ungulates – which are commonly examined 
independently, while accounting for a recognized top–down 
factor affecting survival in bears. Both fruit and ungulate 
matter are documented as a major component of the sea-
sonal diets of interior grizzly bear populations in the Rocky 
Mountains of western North America (McLellan and Hovey 
1995, Munro et al. 2006, McLellan 2011, López-Alfaro 
et al. 2015). Importantly, they also provide complementary 
macronutrients (i.e. carbohydrate from fruit and protein and 
lipid from ungulates) that may allow bears to optimize their 
diet and fitness when co-occurring (Coogan et al. 2014, 
Erlenbach et al. 2014). These contrasting nutritional char-
acteristics (fruit versus meat) allow us to explicitly estimate 
food abundance and at the same time implicitly account for 
macronutrient composition. Our co-limitation hypothesis 
predicts that local abundance in bears should be higher in 
landscapes having simultaneously higher ungulate and fruit 
resource supply. We compared this co-limitation hypothesis 
against traditional single resource hypotheses that suggests 
resource supply in either meat (Hilderbrand et al. 1999) or 
fruits (McLellan 2011) alone affect local population density 
of bears. We test these hypotheses for a population of grizzly 
bears in west-central Alberta where we have information on 
local variation in bear abundance and mapped (modelled) 
abundance of ungulate and fruit resources in units (kcal) that 
are biologically relevant to measuring population responses.

Methods

Study area

Our study was located in west-central Alberta, Canada 
(approximate location 53°15′N, 118°30′W) and based 
around 176 square grid cells that were 7  7 km in size 
(8624 km2; Fig. 1). The study area is mainly public lands 
managed by the province and zoned for multiple uses with 
forestry and development from the energy sector (oil, gas and 
coal mining). The landscape is characterized as the eastern-
slopes of the Rocky Mountains with the western border of 
the study area being mountainous and foothills to the east. 
Climate is continental with the mountains being colder and 
having higher average annual precipitation than the foothills. 
Forests dominate the landscape with lodgepole pine Pinus 
contorta being the most common tree species. Wet sites at 
moderate to low elevations have stands of black spruce Picea 
mariana and tamarack Larix laricina, whereas aspen Popu-
lus tremuloides and white spruce Picea glauca occur in more 
mesic upland sites at lower elevations. Finally, Engelmann 
spruce Picea engelmannii and subalpine fir Abies lasiocarpa 
forests occur at the highest elevations near treeline. Average 
grizzly bear density in the area was estimated during the time 
of study to be 4.79 bears per 1000 km2.

Top–down models

Grizzly bear survival in the area is strongly associated with 
the proximity of roads (Boulanger and Stenhouse 2015). As 
such, road density is frequently used as a proxy for human-
caused mortality since road access increases human–bear 
interactions leading to higher mortality rates (Benn and 



371

Herrero 2002, Johnson et al. 2004, Nielsen et al. 2004a). 
For example, in west-central Alberta demographic models 
suggest that stable grizzly bear populations occur in water-
sheds where road densities are at 0.75 km km–2 or lower 
(Boulanger and Stenhouse 2015). For this study we esti-
mated road density at a 7.44-km radius moving window 
scale representing the average daily movement of female and 
sub-adult grizzly bears during hyperphagia (Boulanger et al. 
2013). Road densities in the area were generally higher in the 
east than in the west (Fig. 2).

Ungulate models

To represent carnivory resources of ungulate matter, local 
abundance (population density) of five ungulate species were 
modelled: moose Alces alces, elk Cervus canadensis, bighorn 
sheep Ovis canadensis, white-tailed deer Odocoileus virgin-
ianus and mule deer Odocoileus hemionus. Abundance data 
(counts) were obtained from aerial surveys conducted by 
Alberta Environment and Sustainable Resource Develop-
ment (AESRD) for a sample of survey blocks measuring 
5′ longitude by 5′ latitude. Local density of ungulates were 
estimated for the study area using generalized linear models 
(GLMs) fit to observed abundances of individual ungulate 
species using a set of environmental predictors (land cover, 
land use and terrain; see Supplementary material Appendix 1  

for details). Conversions to total biomass were estimated for 
each species, including neonates, based on average body sizes 
by sex for each species using a literature review (Supplemen-
tary material Appendix 1). Digestible energy (Dig E; kcal 
kg–1) estimates for ungulates were based on ungulate biomass 
(kg) estimates. Ungulate biomass estimates were corrected 
for water and indigestible components using body compo-
sition estimates; however, since estimates were not available 
for some species and age classes, body composition estimates 
of whole ungulates were modelled using the average percent 
body composition of moose Alces alces minus hide and ingesta 
(ingesta-free body mass [IFB mass]; Hundertmark et al. 
1997). We then applied a digestible energy (kcal kg–1) con-
version for meat (Pritchard and Robbins 1990) to estimate 
ungulate digestible energy using the following equation:

whole ungulate biomass (kg)  % IFB mass  
  % dry matter IFB  % ash-free     (1)
IFB  digestible energy (kcal kg–1)

Specifically, percent IFB mass was 88.1, percent dry matter 
of IFB mass was 34.8, percent ash-free content IFB was 94.9 
(100–5.1% ash), and digestible energy was taken as 6920 
kcal kg–1. Model predictions of ungulate digestible energy 
were mapped for each 30 m pixel, but averaged across the 
landscape in 7.44-km radius moving windows matching 
daily movement rates of bears in the study area. Given the 

Figure 1. Location and terrain (elevation) of the Yellowhead grizzly bear study area in west-central Alberta, Canada illustrating DNA hair-
snag sampling design (7  7 km grid), location of hair-snag sites and number of unique grizzly bears detected at a site (size of points) in 
2004. Inset map shows location of study area within the Province of Alberta.
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rain, soils, and forest stand measures previously found in the 
area to be important landscape predictors of buffaloberry 
distribution (Nielsen et al. 2003, 2010, Roberts et al. 2014). 
See Supplementary material Appendix 1 for more details 
on modelling. Following model development, model pre-
dictions (distribution, shrub density, and fruit abundance) 
were mapped at a 30-m resolution in a Geographic Informa-
tion System (GIS), but averaged across the landscape at a 
1.69-km radius (larger radius of 7.44 km was marginally less 
supported; see Supplementary material Appendix 1) match-
ing the scale of detectability of bears at lured hair-snag sites 
(Boulanger et al. 2004). Fruit abundance therefore repre-
sents an average landscape-scale resource supply surrounding 
grizzly bear DNA hair-snag sites, not localized use of the site 
itself. Number of fruit per pixel (900 m2) was predicted for 
the study area during a typical fruiting year of 2001. Fruit 
abundance was then converted to dry biomass using the dry 
weight of buffaloberry fruit (Coogan et al. 2014) and further 
converted to maps of available digestible energy (Dig E; kcal 
kg–1) using biomass to digestible energy conversion of:

Gross energy  % Digestible energy (2)

Gross energy of buffaloberry fruit was estimated as 4310 kcal 
kg–1, while percent digestible energy was estimated as 64.5% 
(Coogan et al. 2014) thereby resulting in 2780 kcal Dig E 
kg–1 or on a per gram basis of 2.8 kcal Dig E g–1.

scale at which ungulate resource supply is summarized and 
the type of data used for assessing local abundance of bears 
(unique bears at DNA hair snag sites), this approach avoids 
focus on localized habitat selection behaviours that were asso-
ciated with use of individual resources patches. Behavioural 
selection of resources was not the focus of this paper, but rather 
explaining variation in abundance of bears in an area.

Fruit models

We chose Canada buffaloberry Shepherdia canadensis as a 
representative species to estimate fruit abundance since it is 
the most common fruit in the region (Nielsen et al. 2010) 
and consumed most by bears in the study area (Munro et al. 
2006). A multi-stage modeling approach was used to esti-
mate the nutritional landscape in digestible energy (kcal) 
for Canada buffaloberry. Specifically, three sets of model 
responses representing different measures of buffaloberry 
were fit using GLMs this included: 1) the distribution 
(presence/absence) of buffaloberry at a site; 2) shrub abun-
dance (density) conditional on being present; and 3) fruit 
abundance conditional on being present. Field plot data on 
buffaloberry presence, shrub abundance and fruit density 
were used to predict landscape variation in the availability 
of buffaloberry fruit using environmental spatial predictors. 
Environmental variables included land cover, climate, ter-

Figure 2. Road density (7.44-km radius moving window) patterns within the Yellowhead study area in west-central Alberta, Canada. Note 
higher road densities in the north and southeast. Number of unique bears detected at DNA hair snag sites indicated by increasing size of 
points.
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which was subsequently related to the surrounding average 
road density (top–down) and landscape food resource sup-
ply measured in kcal (bottom–up). Maximum number of 
bears detected at a site was five individuals (a second site also 
recorded four bears). More typical were sites with singletons 
(n  75), two bears (n  15), or three bears (n  7).

Single versus complementary resource hypotheses

To evaluate support for the single versus complementary 
resource hypotheses (bottom–up hypotheses) we tested 
six a priori models predicting patterns in local grizzly bear 
abundance (Table 1). Models tested included a null model 
where local abundance was assumed to be constant across 
the landscape (mean abundance), a null landscape model 
(base model) where we accounted for sampling session 
(time) and the expected effect of top–down factors influ-
encing survival of bears as measured by surrounding road 
density (Boulanger and Stenhouse 2015; see Supplementary 
material Appendix 1 for details on model selection for the 
null landscape model), and finally different combinations of 
food resource models. The combinations of food resource 
models differentiated the importance of carnivory (ungulate 
sources of meat at 7.44-km radius) versus frugivory (buf-
faloberry fruit at a 1.69-km radius), thus, testing single and 
complementary resource hypotheses when combined either 
as an additive or multiplicative effect. Models were also fit 
for buffaloberry food resource supply summarized at a 7.44 
km scale. However, the 1.69-km radius scale was more sup-
ported than the 7.44-km radius (ΔAIC  4.08; evidence 
ratio of 7.7) with no differences observed in the ranking of 
hypotheses (Supplementary material Appendix 1) so we only 
report here models where buffaloberry resource supply was 
summarized within 1.69 km of hair-snag sites. Note that for 
the complementary resource hypothesis we considered both 
an additive (meat  fruit) and a multiplicative (meat  fruit 
 meat fruit) model to evaluate whether local abundance 
of bears increased more than expected in the presence of 
complementary foods (i.e. multiplicative model).

To evaluate these hypotheses, we used ordered logistic 
regression predicting the probability of an increased count 
of bears (0, 1, 2,  3) at a sample site/session. We used the 
different landscape and sampling covariates as predictors for 
the different hypotheses. An ordinal model was used rather 
than a zero-inflated or negative binomial count model since 

We note that bears in the study area consume several 
different plant foods throughout the active period (e.g. 
the roots of Hedysarum spp. and herbaceous plants) which 
would provide macronutrients in ratios that may contribute 
towards a balanced diet (Munro et al. 2006, Coogan et al. 
2014). The focus of this study, however, was to test the co-
limitation hypothesis of fruit and meat on local patterns in 
bear abundance based on a priori evidence. Furthermore, 
both fruit and meat may provide a fundamentally different 
balance of macronutrients than other plant material, and are 
likely to be less available to bears in general than are herba-
ceous plants that are more ubiquitous in availability and thus 
unlikely to be limiting. Furthermore, patterns of vegetation 
productivity as measured by maximum values of the natu-
ral difference vegetation index (NDVI) demonstrated neu-
tral to negative correlations with ungulate and buffaloberry 
food supply indicating that our measures of food resource 
were not simply surrogates for areas of higher vegetation 
productivity (Supplementary material Appendix 1). Indeed, 
relationships between NDVI and local bear abundance were 
negative suggesting that herbacous resources were not limiting 
bear density (Supplementary material Appendix 1).

Local patterns in grizzly bear abundance

In 2004, the minimum count of grizzly bears was estimated 
at each of the 1138 lured hair-snag sites (Fig. 1) with an 
overall population estimate in 2004 at 36 bears (C.I. 28.6–
45.3) (Stenhouse et al. 2015). Each site consisted of a single 
strand of barb wire set in a ‘corral’ fashion (∼100 m2 in size) 
at a 0.5 m height with a cow blood lure placed on a pile of 
brush in the middle of the corral to attract bears to the site. 
Barb wire height generally precludes cubs-of-the-year from 
being sampled thus targeting yearling to adult bears. Bear 
hair was collected non-invasively on the barb wire as animals 
entered and/or left the corral. Each hair-snag sample repre-
sented a two week session where hair was collected at the 
end of the session with sampling lasting from 25 May to 17 
July 2004 and up to four possible sessions and sites per 49 
km2 (7  7 km) grid cell. Hair samples were genosequenced 
by Wildlife Genetics International to identify the number 
of unique grizzly bears detected at each hair-snag site (see 
Paetkau 2003 and Proctor et al. 2010 for more details on 
DNA lab techniques). We used the number of unique bears 
at each sample site to represent local abundance in bears, 

Table 1. Set of hypotheses tested, model structure, and descriptions as it relates to testing top–down (mortality) and bottom–up (food resource 
supply) control in local patterns of grizzly bear abundance.

Hypothesis Model structure Description

Null Null No landscape pattern in bear abundance (mean count across 
study area)

Top–down Null landscape (session  road 
density)

Bear abundance affected by session  local patterns in 
mortality risk/survival (top–down regulation)

Top–down  Bottom–up 
(single resource – fruit)

Null landscape  Fruit Bear abundance affected by bottom–up regulation due to local 
variation in fruit abundance  top–down effects

Top–down  Bottom–up 
(single resource – meat)

Null landscape  Meat Bear abundance affected by bottom–up regulation due to local 
variation in meat (ungulate) abundance  top–down effects

Top–down  Bottom–up 
(complementary additive)

Null landscape  Fruit  Meat Bear abundance affected by the combined effect of fruit and 
meat (additive effect)  top–down effects

Top–down  Bottom–up 
(complementary interactive)

Null landscape  Fruit  Meat  
Fruit  Meat

Bear abundance affected by the combined effect of fruit and 
meat (multiplicative effect)  top–down effects
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Single versus complementary resource hypotheses

Models comparing local patterns in grizzly bear abundance 
supported the additive complementary resource model of 
ungulates and buffaloberry with an Akaike weight of 0.720 
(Table 2). The second most supported models was the 
bottom–up complementary interactive model with a ΔAIC 
of 1.95 and an Akaike weight of 0.272. In comparison,  
the null landscape model representing the top–down 
hypothesis (road density and sampling session covariate) 
was much less supported at a ΔAIC of 49.63, thereby 
illustrating the strong effect of adding bottom–up factors 
measuring local resource supply to traditional top–down 
models that assume abundance is related only to top–down 
mechanisms (see Supplementary material Appendix 1 for 
further separation of bottom–up and top–down models, 
but notably no changes in inferences). When considering 
only the single resource hypotheses, carnivory (ungulate 
matter) was more supported than frugivory (buffaloberry 
fruit) with a ΔAIC from the top complementary model 
being 8.92 and 35.71 respectively. Indeed, buffaloberry 
fruit alone was poorly correlated to patterns in bear abun-
dance illustrating that buffaloberry is additive over that of 
carnivory and does not alone support variations in bear 
abundance.

Model parameters for the most supported model con-
firmed the expected inverse relationship between road density 
and observed local abundance in grizzly bears. Specifically, 
each one unit increase in road density resulted in a 62.3% 
decrease (odds ratio [e^b]  0.516) in local abundance 
of bears (Table 3). Road density was highest in the north 
and east regions of the Yellowhead population unit, with 
an additional area of high density found in the southeast  
(Fig. 2). In contrast, areas of low road density were located in 
the central and western regions of the study area adjacent to 
the Rocky Mountains. An inverse relationship was also found 
between session number (seasonality) and bear abundance 
with a 35.6% decrease in odds (Odds ratio [e^b]  0.695) in 
local abundance of bears at a site across each session period 
(Table 3).

Relationships between food supply and local abundance 
of bears predicted that for each 10-fold increase in buffa-
loberry food supply (log10[kcal of fruit] at 1.69-km radius 
around hair-snag sites), local abundance of bears increased 
by a factor of more than 2 (odds ratio [e^b]  2.125). On 
the other hand, each 10-fold increase in ungulate food sup-
ply (log10[kcal of ungulate meat] at 7.44-km radius around 
hair-snag sites) increased local abundance of bears by a fac-
tor of 59 (odds ratio [e^b]  59) demonstrating the impor-
tance per unit increase in ungulate matter on local patterns 
in bear abundance. However, standardized coefficients 
(e^bStdX) demonstrated that when considering a one unit 
standard deviation change in ungulate and fruit resources, 
both ungulate and buffaloberry food supply were similar in 
their effect on local grizzly bear abundance with standardized 
coefficients for both being 2.0 (i.e. two-fold increase in local 
bear abundance per standard deviation change in resource 
supply) (Table 3). On a per digestible kcal basis, ungulates 
were therefore 29.5 times more important in affecting local 
abundance of bears, although these differences were similar 

the number of unique counts of bears at DNA hair-snag 
sites was low and the parallel assumption for ordered logis-
tic regression was satisfied (Brant test of parallel regression 
assumption, c2  5.29, p  0.726, DF  8). To account for 
potential correlation among local hair-snag sites, the variance 
(standard errors) of parameters in the ordered logistic mod-
els was estimated using the ‘clustered sandwich’ approach 
that accounts for intergroup correlation (Williams 2000). 
Clusters were identified as the individual 7  7 km DNA 
sampling cells used to allocate DNA hair snag sites across 
the study region. We evaluated support for each hypothesis 
based on the principle of parsimony using Akaike’s informa-
tion criteria (AIC) and associated Akaike weights (Burnham 
and Anderson 2002). For the most supported model, we 
present odds ratios as an effect size reflecting the change in 
probability of bear abundance for a one unit change in the 
model variables (e^b). We also report the odds ratio stan-
dardized to a one unit change in the standard deviation of 
that variable (e^bStdX) to allow direct comparisons of effect 
size among variables.

Data accessibility

Data available from the Dryad Digital Repository: < http://
dx.doi.org/10.5061/dryad.771t4 > (Nielsen et al. 2016). 
Data on sample locations of bears is not provided due to the 
sensitive nature of locality data for a provincially threatened 
species.

Results

Nutritional landscape models and local patterns in 
grizzly bear abundance

High concentrations of digestible energy from ungulate mat-
ter were predicted within the mountainous western region of 
the study area (Fig. 3a). However, some of the highest con-
centrations of ungulate resources occurred around specific 
locales such as the reclaimed Greg River/Luscar coal mine 
where ungulate species such as elk and sheep are high. Avail-
able digestible ungulate matter (kcal) was generally lower 
in the eastern foothills where elk and sheep were absent 
(sheep) or less abundant (elk), although moose tended to be 
more common in the eastern foothills. DNA hair-snag sites 
recorded areas of high local bear abundance ( 3 bears) in 
areas predicted to have relatively high amounts of digestible 
energy from ungulates (Fig. 3a).

Spatial patterns in the digestible energy of buffaloberry 
fruit were more variable than that of ungulates. This reflects 
the more localized scale at which buffaloberry resources were 
measured around DNA hair snag sites (1.69-km radius) and 
local variation in forest structure. Areas of high buffaloberry 
resources were predicted for both the mountains and foothills 
regions with the greatest abundance of fruit often following 
valley bottoms (Fig. 3b). DNA hair-snag sites measuring 
local grizzly bear abundance were generally related to areas 
with higher buffaloberry fruit (Fig. 3b), although the rela-
tionship was less apparent in the east where road density was 
higher (Fig. 2).
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Figure 3. Patterns of grizzly bear abundance and predicted digestible energy for the two most dominant food resources: (a) ungulates at a 
7.44-km radius moving window (above) and (b) Canada buffaloberry fruit at a 1.69-km radius moving window (below) for the Yellowhead 
ecosystem, Alberta, Canada.
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to better optimize their diet thereby increasing their fitness 
(Coogan et al. 2014, Erlenbach et al 2014). Importantly, the 
availability of complementary foods was more essential in 
explaining bear abundance than energy or protein intake per 
se. For example, if energy or protein were most important, 
then bear density would have been strongly associated with 
high-ungulate areas regardless of fruit abundance; however, 
there are several areas within the study having high ungu-
late and low fruit abundance with low bear abundance. Our 
work, therefore, further supports the supposition that purely 
energy-or single nutrient-based foraging studies may be insuf-
ficient to accurately predict or understand animal foraging 
behavior, particularly for omnivores (Illius et al. 2002, Simp-
son et al. 2004, Robbins et al. 2007, Erlenbach et al 2014).

Although the co-limitation hypothesis of ungulate matter 
(meat) and fruit was most supported, our study suggested 
that ungulate matter was more important than fruit in pre-
dicting local abundance of grizzly bears. This is consistent 
with the observation that captive grizzly bears restricted 
to fruit-only diets are constrained in their ability to gain 
weight (Welch et al. 1997). One reason may be the resource 
size and efficiency between kcals of different food items. 
For example, 1 kcal of ungulate meat is more likely to be 
associated with several other kcals of ungulate meat (e.g. a 
whole carcass), than is 1 kcal of fruit which is packed in a far 
smaller and less energy dense ‘package’. Meat also provides 
both protein and lipid to bears, thereby offering a source of 
two macronutrients (importantly protein and a non-protein 
macronutrient) in an easily digestible form – adequate pro-
tein intake is important for bears in order to support lean 
mass growth and lactation costs (López-Alfaro et al. 2013). 
Another explanation is that the availability of fruit energy in 
the area is not enough to dilute the protein intake of griz-
zly bears to optimal levels (perhaps especially for highly car-
nivorous bears), such that bears are more likely to consume 
a high ungulate diet despite not being optimally balanced 
– bears should have a high tolerance to dietary imbalances 
similar to that observed in other omnivores (Raubenheimer 
and Simpson 1997). It may also be that the diet of griz-
zly bears is within a ‘nutrient space’ (sensu Simpson and  
Raubenheimer 2012) that requires relatively little fruit to 
reach their optimal intake of non-protein energy (Coogan 
et al. 2014). Carbohydrates are likely to be important in this 
ecosystem, because it may be the only means for bears to 
optimize their nutrient intake given the absence of high-lipid 
food items. Another factor may be that bears can potentially 
consume ungulates throughout the active season, as opposed 
to fruit which has a limited window of availability. Yet, 

when considering standardized changes in available resource 
supply.

Differences in the interpretation of the importance of 
individual resources are due in part to greater landscape 
variation in local fruit supply compared with that of the 
supply of ungulate meat measured at broader spatial scales  
(Fig. 4). Regardless, both factors were found to contribute to 
the observed patterns in local abundance of bears with model 
support of the complementary effect being 90 times more 
supported than the most supported single resource model of 
ungulate meat (ratio of Akaike weights; Table 2). Figure 4 
illustrates graphically this additive complementary effect with 
the probability of observing no bears (Fig. 4a) or the largest 
count ( 3) of bears (Fig. 4b) at a site. Only in situations 
where both ungulate and buffaloberry resource supply were 
abundant were the counts of bears predicted to be highest, 
although variation in buffaloberry food supply made little 
difference in high counts of bears unless moderate or high 
levels of ungulate resource supply were first available.

Discussion

We demonstrate here that local patterns in grizzly bear 
abundance were associated with both top–down and bot-
tom–up factors, and specifically that areas high in energy 
from complementary resources (ungulates and fruit in an 
additive manner) were more important in predicting pat-
terns in local abundance of bears than either food source 
alone. This supports the complementary resource hypothesis 
where the availability of complementary foods, and there-
fore diet quality at the landscape level, is positively associated 
with local population density by enabling individual bears 

Table 2. Comparison of candidate models explaining local abundance of grizzly bears. Model selection results listing model log likelihoods 
(LL), model complexity (K), Akaike’s information criteria (AIC), change in AIC (Δ AIC) and overall support (weights) of the models given data 
and models tested (wi AIC). Models are rank ordered from most to least supported. Bottom–up complementary additive refers to Meat  Fruit, 
while bottom–up complementary interactive refers to Meat  Fruit  Meat  Fruit.

Hypothesis (model) Model LL K AIC ΔAIC wi AIC

Top–down  Bottom–up (complementary additive) –350.03 7 714.05 0.00 0.720
Top–down  Bottom–up (complementary interactive) –350.00 8 716.00 1.95 0.272
Top–down  Bottom–up (single resource of meat) –355.49 6 722.97 8.92 0.008
Top–down  Bottom–up (single resource of fruit) –368.88 6 749.77 35.71 0.000
Top–down –376.84 5 763.68 49.63 0.000
Null model (mean count of bears at all sites) –407.02 3 820.04 105.99 0.000

Table 3. Model parameters (b and SE) predicting local counts in griz-
zly bears as a function of sampling time (session), local mortality 
risk (road density within a 7.44 km moving window), buffaloberry 
fruit food supply (log10 digestible energy, kcal; 1.69 km radius), and 
ungulate (meat) food supply (log 10 digestible energy, kcal; 7.44 km 
radius). Odds ratio change in probability of count for a one unit 
change in variable (e^b) and a one standard deviation change in 
that variable (e^bStdX) are presented. Standard errors (SE) are based 
on cluster sandwich estimates using DNA cell as the cluster.

Model variable b SE e^b e^bStdX

Sampling session number (season) –0.364 0.111 0.695 0.688
Mortality risk (road density) –0.662 0.420 0.516 0.761
Buffaloberry food supply 0.754 0.273 2.125 1.994
Ungulate (meat) food supply 4.080 0.520 59.12 1.998
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interactive effects of food resources have been shown to exist 
at the individual level, they may not directly translate with 
patterns in local abundance.

Although our focus is on local patterns in grizzly bear 
abundance, higher number of grizzly bears at hair snag sites 
may be due in part to females with offspring. Cub-of-the 
year are unlikely to be captured by barb wire corrals since 
hair snag heights are high (0.5 m) relative to their size. Fur-
thermore, a low birth rate and population size may further 
reduce the likelihood of capturing cub-of-the-year bears 
(Garshelis et al. 2005). However, if dependent offspring are 
being captured in barb wire corrals, then the relationship 
between increased local bear abundance and the availability 

despite the relative importance of one food over the other, 
both fruit and ungulates were better at predicting local bear 
abundance than either food resource in isolation and only 
when both were available at high levels were counts of bears 
high. Higher bear abundance in areas offering both meat and 
fruit supports our co-limitation hypothesis. Although the 
most supported model did not include an interactive (mul-
tiplicative) effect between fruit and ungulate calories, there 
was secondary support for the multiplicative effect given that 
ΔAIC  2 (Burnham and Anderson 2002), although Arnold 
(2010) points out that this is a case of an ‘uninformative 
parameter’ since complexity increased with little gain in fit. 
We therefore support the additive response. Although the 

Figure 4. Predicted local abundance of grizzly bears as a function of tradeoffs in available digestible energy (per ha) in ungulate and buffa-
loberry fruit resources. Model assumes no local roads (road density  0) and the time of sampling being the first sampling session. Probabil-
ity that a site has no grizzly bears (a) and a count of  3 bears (b) is illustrated as filled contours.
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benefit bears (Levi et al. 2012) if ungulate populations  
are low.

Traditionally, resource co-limitation studies have often 
been applied to autotrophic and herbivorous consumers, 
where individual growth responses to specific nutrient-
limitation scenarios have been examined (Elser et al. 2007, 
Simpson and Raubenheimer 2012, Sperfeld et al. 2012). Our 
results suggest that the concept of nutrient co-limitation is 
also relevant to larger scale population measures. For exam-
ple, under the more traditional resource limitation model 
of Liebig’s law of the minimum, growth is strictly limited 
by the most limiting nutrient. The co-limitation hypoth-
esis suggests instead that growth can be simultaneously lim-
ited by  1 nutrient (Sperfeld et al. 2012). The association 
between bear density and both fruit and ungulates (Fig. 4) 
is similar to co-limitation patterns in interactive essential 
resources (see Fig. 1b in Sperfeld et al. 2012), where areas of 
rounded probability isoclines indicate a smooth transition 
of limitation by fruit to ungulates and a range of resource 
availabilities where both resources are simultaneously lim-
iting. Similarly, while macronutrient self-selection studies 
necessarily tend to focus on the behavioral and physiologi-
cal responses of individual animals, our results suggests that 
fitness benefits of a mixed-diet can influence spatial patterns 
of population density across an ecosystem. We demonstrate 
both the importance of bottom–up regulation using griz-
zly bears and that a multidimensional approach to model-
ing bottom–up regulation is more informative than simply 
investigating food availability, energy per se, or single nutri-
ents. Fundamentally, a bottom–up approach to ecology, 
management, and conservation relies on understanding 
the relationships between an animal, their habitats, and the 
food resources providing the necessary nutrients and energy. 
Yet, lack of knowledge of the nutritional requirements of 
wild animals, and the nutrient content of foods they con-
sume, often limits such an approach. Better integration of 
nutritional parameters within studies is therefore needed. 
Our study demonstrates the importance of bridging this 
gap, in order to further develop an interactive and nutrient-
specific approach to understanding the nutritional ecology 
of animals in the wild.
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Appendix 1 
Nutritional landscape modeling of ungulate (meat) supply 
Ungulate observations 

We obtained winter ungulate survey data from a portion of the Yellowhead bear management unit 

that included: 1) aerial moose Alces alces surveys collected by Alberta Environment and 

Sustainable Resource Development (AESRD); and 2) aerial and ground-based surveys of sheep 

(Ovis canadensis) conducted by AESRD, Teck Coal Ltd., and Bighorn Wildlife Technologies Ltd. 

Moose surveys were undertaken within WMUs 338 (February 2009), 339 (February 2011), and 340 

(January 2010). Sheep surveys occurred (January/February 2011) within WMUs 436-446, 

excluding 445, and included the Gregg River, Luscar, Cheviot (December 2005), and Coal Valley 

(RobbTrend – December 2008; RobbWest – January 2011) mine sites.  

Moose surveys followed a modified stratified random block (SRB) design using fixed and 

rotary winged aircraft (Gasaway et al. 1986). Sheep surveys were also completed using a rotary 

winged aircraft to conduct a comprehensive inventory of mountain complexes (winter range) where 

animals tend to concentrate as well as census portions of the Cheviot and Coal Valley mine sites by 

flying pre-determined transects (orientated NW–SE and at approximately 800 m apart). The 2011 

comprehensive survey was complemented by a systematic ground survey of the Gregg River and 

Luscar mine sites by walking, driving, and viewing ungulates from strategic vantage points. For our 

purpose, we only considered the most recent survey by WMU because ungulate populations are 

dynamic and may fluctuate from year to year due to predation, disease, climate (snowfall, 

temperature), or hunting (Edwards 1956, Rolley and Keith 1980, Post and Stenseth 1998, Ferguson 

et al. 1999, DeCesare and Pletscher 2006, Hebblewhite et al. 2006, Dekker 2009, Boyce et al. 

2012). Although surveys were focused on quantifying (counts) and classifying (gender, age class) 

moose or sheep, other ungulates were also documented in the process. 

 

Analysis scale and environmental predictors of ungulate abundance models 

We used survey grid size, 3’ × 5’ for WMU 339 and 5’ × 5’ for WMUs 338 and 340, to define the 



analysis scale for moose survey data. In doing so, search effort could be accounted for explicitly in 

abundance models. For the other aerial and ground-based survey data that did not implement the 

SRB method, we extended the 5’ × 5’ survey grid since this size accounted for the majority of the 

SRB observations. We assume that search effort was adequately represented in each of the 

corresponding grids. Although our approach allows for the investigation of habitat relationships to 

ungulate abundance at a common scale and temporal period, we recognize the potential weakness of 

inference derived at a single scale and solely relying on winter surveys for several reasons. 

Ungulate species may respond to local environmental conditions at specific scales (Maier et al. 

2005), ungulate densities may vary locally as animals alter their habitat use and movements to cope 

with reduced food availability and snow depth (Telfer 1978, Parker et al. 1984, Poole and Mowat 

2005), and individual animals may migrate long distances from summer to winter ranges 

(Nicholson et al. 1997, Hebblewhite et al. 2006). While our approach to estimating density does not 

address the issue of ungulate migrations, we believe that the relatively large area (~38–63 km2) of 

the survey grids was appropriate given that changes in animal behavior associated with local habitat 

(mountain tops and valley bottoms) would be captured in a single survey grid. 

Spatial environmental variables that mirrored those used in previous studies of ungulate 

distribution and abundance were used for modeling. Variable types created from raster (30 × 30 m 

pixel) and vector data sources were grouped into classes reflecting broad differences in habitat 

composition associated with vegetation (land cover), forest attributes (age, leading tree species, and 

canopy cover), topography, water (streams, lakes), and anthropogenic land use (Table A1). We 

distinguished vegetated from non-vegetated habitats using a land cover map (McDermid 2005). 

Anthropogenic features including well-sites, pipelines, powerlines, railways, and roads were 

buffered based on feature width visually estimated from a Landsat image (30 × 30 m pixel). We 

rasterized (30 × 30 m) anthropogenic features along with vector data identifying cutblocks and 

reclaimed mine footprint. We then created a final habitat layer by replacing land cover values that 

corresponded to each rasterized layer. In doing so, herb, shrub, and barren land cover classes would 

be associated with naturally occurring meadows and alpine vegetation. Attributes were retained to 

distinguish anthropogenic features from cutblocks and the Gregg River/Luscar and Coal Valley 

mines. We discriminated between the two mine sites because sheep were not found on the Coal 

Valley lease given its proximity to the Rocky Mountains. We created a binary raster layer to 

identify conifer (> 50% conifer) and deciduous forests by reclassifying a continuous leading species 

raster for conifer or deciduous trees. A digital elevation model was used to create slope and aspect 

grids. The aspect grid was scaled (± 180°) so that positive values were westerly, negative values 

were easterly, and 0 was south (Keating et al. 2007). To identify escape terrain for sheep, we 

created two raster layers; one to identify slopes greater than 27° and the other to represent 



contiguous patches of slopes greater than 27°and larger than 7000 m2 (DeCesare and Pletscher 

2006). We used a vector layer depicting rivers and grouped them by order as follows: 1) headwater 

streams that are relatively small in size and that may flow intermittently or permanently (orders 1 

and 2); and 2) rivers relatively large in size and that are permanently flowing (orders 3-5). 

Waterbodies includes all types of naturally occurring standing water, such as wetlands or lakes 

(AltaLIS 2008). 

For each survey grid, we calculated the proportion of each land cover class, anthropogenic 

footprint, conifer and deciduous forest, escape cover (> 27°), escape cover greater than 7000 m2 in 

size, and waterbodies. We also calculated the total length (m) of each stream order class, the 

average and standard deviations of forest age, canopy closure, slope, and aspect as well as the 

average distance (m) to escape cover and escape cover greater than 7000 m2 in size. For canopy 

closure and forest age, average and standard deviations were calculated by re-coding other non-

forested habitats as no data and as zeros. Standard deviations were used in addition to averaged 

values since habitat heterogeneity tends to be an important factor influencing animal distribution 

and health (Mysterud et al. 2001, Kie et al. 2002, Boyce et al. 2003). All GIS manipulations and 

calculations were performed using ArcGIS 10.1 and the spatial analyst extension (ESRI 2012). 

 

Abundance models 

Treating the survey grid as the sample unit, we summed ungulate counts by species, sex and age 

class (neonate, adult, and unclassified). We then associated the summed counts in each sample 

survey unit to the underlying habitat. A preliminary assessment suggested that due to a relatively 

small sample size (grid observations) and correlations amongst the count data, models could be 

developed for adult male (n = 54) and female (n = 84) moose, elk (n = 26), white-tailed (n = 50) and 

mule (n = 21) deer, and sheep (n = 26). Counts of male and female moose were not correlated, 

whereas counts of male and female sheep were highly correlated (|r| = 0.91). In addition to the 

binary and continuous variables described previously, we created additional continuous variable 

types by grouping herbs and shrubs, and rivers as well as introduce quadratic (squared) terms to 

investigate non-linear relationships. We also created binary variables to differentiate small from 

large survey blocks, the presence or absence of escape terrain, and reclaimed coal mine footprint. 

Large survey blocks were distinguished from small ones according to the smallest 5’ × 5’ grid (~51 

km2). We transformed our response variables by taking the natural log of count observations and 

used a generalized linear model (GLM) with a gaussian distribution and identity link to estimate 

regression coefficients (McCullagh and Nelder 1989). Prior to model fitting, we identified potential 

outliers from plots of response vs. predictor variables and Cleveland dotplots (Zuur et al. 2009). We 

then used Pearsons correlation coefficients to identify predictor variables that were not correlated 



(|r| ≤ 0.55) for each of the response variables. For those predictors that were not correlated, we 

considered all possible combinations (all-subset approach) of variables (additive effects) as 

biologically plausible candidate models. However, we excluded models with variance inflation 

factors above 3 to avoid issues of collinearity (Zuur et al. 2009). Diagnostic plots (residuals vs 

fitted, hat matrix, and Cook’s distance) were used to confirm the absence of influential 

observations. We used Akaike’s information criterion (AIC) adjusted for small sample size and 

Akaike weights (wi) to evaluate candidate models. Squared terms for variables were included in the 

candidate model set if the AICc score was 2 units less than a model with a single term. Because no 

‘best’ model could clearly be identified (wi ≥ 0.9), we used multi-model inference for model 

selection by calculating a weighted average of coefficients from the full set of candidate models 

(Burnham and Anderson 2002). Averaged model coefficients (Table A2) were applied to 

environmental predictors across the Yellowhead bear management unit. However, for sheep we 

limited our model predictions to those survey grids that overlapped with the Rocky Mountain 

Natural Region, and where elevation values were above a specific threshold (ELEVx ≥ 1488 and 

ELEVsd ≥ 100) to reflect the known limitation in the range of the species. Raw survey data 

revealed that below these thresholds and outside of mountainous areas, sheep were not present. 

 

Estimates of biomass 

We back transformed estimated counts by taking the exponent of each grid prediction. We then 

calculated biomass (kg km–2) of adult males, adult females (including yearlings for sheep), and 

neonates for each species by multiplying abundance estimates in each grid by fall (October–

December) live body mass (kg) per unit area (km2). Because we did not have gender specific 

models, except for moose, we multiplied grid counts by the proportion of females as follows: elk 

(0.85), white-tailed (0.85) and mule (0.79) deer, and sheep (0.55). Proportions were derived from 

raw survey data where species were classified by gender. Based on literature values of reproductive 

success, we calculated the number of neonates per adult female (> 1 year old) moose (0.84; 

Schwartz 1992), elk (0.78; Hegel 2003), white-tailed (1.0; Alberta 1995) and mule deer (0.85; 

Alberta 1989), and sheep (0.91; Gaillard et al. 2002). Sheep were not considered adults until after 

two years of age (Jorgensen et al. 1993). Thus, we determined the proportion of grid counts that 

would have been adult females based on the proportion of female yearlings (0.07) observed on the 

Gregg River and Luscar mine sites. We also calculated the number of twins expected per female 

moose (0.15; Schwartz 1992), white-tailed (2.08; Alberta 1995) and mule (1.6; Alberta 1989) deer; 

elk rarely have twins and sheep, not at all. Body mass values (averaged or predicted) for moose 

(male = 442, female = 401, neonate = 184, and Lynch et al., 1995), elk (male = 327, female = 230, 

and neonate = 122; Bender et al. 2003), white-tailed deer (male and female averaged = 87, neonate 



= 28; Kuzyk et al. 2009) and mule deer (male and female averaged = 110, neonate = 28; Renecker 

1991), and sheep (male = 89, female = 67, and neonate = 32; Festa-Bianchet et al. 1996) were 

obtained from the literature to estimate typical live weight biomass. 

 

Nutritional landscape model of buffaloberry Shepherdia canadensis fruit supply 
Three models were used to estimate total kcal of buffaloberry fruit per 30 m landscape raster cell in 

the study area. First logistic regression models were used to estimate presence/absence of shrubs 

across the study area. Second, quantile regression was used to estimate shrub density (log 

transformed) at a site, given presence, using the 50th percentile. And third, quantile regression was 

used to estimate fruit abundance (log transformed), given presence of shrubs, again using the 50th 

percentile. Although zero-inflated count models could have been considered for modeling shrub and 

fruit density, substantial differences were evident in the factors affecting presence versus abundance 

of shrubs or fruit when present. The complexity of fitting functions as both zero-inflated and count 

processes simultaneously was seen as too complicated since processes affecting presence can 

fundamentally be different from those affecting abundance (see Nielsen et al. 2005 for supporting 

examples). Here we split up the process into separate models to improve clarity and possible 

independence among each process (e.g. presence, abundance and reproduction). Quantile regression 

was used rather than linear regression or generalized linear models since count data for shrub and 

fruit density (even without absences and transformed) were skewed. Final map predictions were 

determined by first estimating presence, followed by estimates of shrub and fruit abundance for 

only those sites where it was predicted to be present. In a sense, these models were hierarchical or 

multi-staged where abundance models depended on the occupancy model (zero-truncated) and the 

fruit density model depended on shrub abundance. Below are descriptions of each model. 

 

Buffaloberry shrub presence (distribution) 

Logistic regression models were used to predict the presence of buffaloberry shrubs from 1849 field 

plots from within and immediately surrounding the study area (see Nielsen et al. 2004 for field 

methods) using environmental predictor variables from five hypothesized main factors (themes). 

These factors included land cover, climate, soils, canopy (sunlight), and terrain (including one 

factor for sunlight) (Table S3). Terrain factors were split into either a full set of terrain variables 

that represented both solar radiation and terrain wetness (CTI), or for the ‘sunlight’ factor we 

included terrain-derived solar radiation together with canopy cover. No variables were used where 

there was a Pearson correlations of r > |0.7| between them, thus high correlated variables like 

climate variables were first examined to find uncorrelated variables (one temperature variable and 

one precipitation variable). Support for different a priori combinations of hypothesized factors were 



tested across 14 candidate models using Akaike’s information criteria (AIC) (Burnham and 

Anderson 2002). These models included potential interaction terms where first hypothesized. The 

most supported model included land cover, climate, soil and ‘sunlight’ (canopy cover and terrain-

derived solar radiation) (Table A4). Land cover variables included positive relationships with 

conifer forest, mixedwood forest, deciduous forest, shrub, and herb habitats, a negative relationship 

with treed wetland, and a positive relationship with forest canopy cover (Table A5). Climate 

variables included non-linear responses in mean annual temperature (MAT) and growing season 

precipitation (GSP), as well as a positive interaction between MAT and GSP (Table A5). Soil 

factors included a non-linear response to soil pH and a positive relationship with percent sand. 

Terrain effects were observed through a positive relationship with solar radiation (southern slopes), 

and a negative interaction between canopy cover and solar radiation (Table A5). Probabilities of 

occurrence for buffaloberry shrubs were predicted spatially to the study area using the most 

supported AIC model (coefficients from Table A5). Binary predictions of presence (1) / absence (0) 

in raster map cells were based on the optimal cut-off threshold probability determined by the 

probability where model sensitivity and specificity values were equalized (Liu et al. 2005). The 

threshold in the top supported model (Table A4) was 0.1865 (i.e. predicted to be absent (0) if 

probability of presence was <0.1865; predicted present (1) if probability of presence was ≥0.1865). 

Model predictive accuracy was assessed from ROC AUC statistics at 0.79. 

 

Buffaloberry shrub density 

Shrub density (stems per 20 m2 strip plot) data were collected at 325 plots within the study area 

between 2001 and 2003 representing both random and animal use (telemetry) locations. Shrub 

densities were log transformed (log(shrub density + 1)) with quantile regression (50th percentile or 

median) used to relate environmental data to variations in shrub density where shrubs were present. 

A Hosmer and Lemeshow (2000) model building approach was used for estimating environmental 

relationships to observed shrub density were present using environmental from Table A3. Sampling 

design covariates that included random vs. animal use location plot type (0 = random plot in study 

area, 1 = randomly selected bear telemetry location) and year of sample (2001 as reference year) 

were used as a ‘base model’ to account for potential biases associated with plots selected from 

animal telemetry locations. Of all the environmental variables assessed, one climatic variable – end 

of frost free period (EFFP) – was the most supported environmental factor being negatively related 

to buffaloberry shrub density (Table A6). Bears selected for areas with higher buffaloberry shrubs 

based on the binary dummy variable of random vs. used plots, while shrub densities were lower in 

plots sampled in 2002 and 2003 perhaps generally reflecting poorer berry crops in those years 

(Table A6). Model parameters were used to predict shrub density in the study area by back 



transforming to original density counts and scaling to 900 m2 to reflect raster cell size. Reference 

variables for sampling design covariates (i.e. random plots and year of 2001) were used in all 

predictions of shrub abundance with predictions only made for raster cells where buffaloberry was 

predicted to be present and only within the range of values observed within plots (1 to 80 shrubs per 

20 m2). 

 

Buffaloberry fruit density 

Fruit density data were collected within the same 325 plots where shrub densities were counted by 

counting fruit when present within the same 20 m2 strip plot used to count shrub density. Because 

fruit were only available from mid to late summer (weeks 26 to 40), a subset of plots (n = 268) were 

used for modeling variation in Canada buffaloberry fruit density. Fruit density were log10 

transformed (log10(fruit+1)) with quantile regression (50th percentile or median) used to relate 

environmental data, local shrub abundance (density), and sampling design covariates to variations 

in fruit density where shrubs were present during the fruiting season. A Hosmer and Lemeshow 

(2000) model building approach was again used based on environmental from Table A3. Sampling 

design covariates (plot type and year) were used in the base model to account for any biases 

associated with sampling methods. This included a plot type by year interaction since fruit 

abundance was variable among years and some plots were animal locations where we’d expected 

selection towards areas of higher fruit abundance. Because of the elevation gradient in the study 

area may result in later fruit availability, we also used week number (between 26 and 40 with a 

quadratic relationship tested) and an interaction between week number and mean annual 

temperature (which represents the elevation gradient) in the base model. As would be expected, 

fruit density was significant and positively related to shrub density (Table A7). Canopy cover was a 

significant predictor of fruit abundance (Table A7) with a quadratic relationship predicting that fruit 

density was highest between 35% and 40% forest canopy cover. Fruit density was also positively 

related to mean annual temperature (Table A7) predicting greater fruit abundance at lower 

elevations. The remaining variables in the model were associated with sampling design covariates 

(base model), although only week number and the interaction of week number and mean annual 

temperature (MAT) were substantially related to observed fruit abundance. Model parameters were 

used to predict fruit density in the study area by back transforming to fruit density and scaling up 

densities to 900 m2 to reflect the raster cell size. Reference variables for sampling design covariates 

(i.e., random plots, 2001 base year, and week number assumed to be 32 which is around the start of 

ripening of buffaloberry fruit on ~ 1 August) were used in predictions of fruit density with 

predictions only made where buffaloberry was predicted to be present and only within the range of 

fruit density observations (0 to 6618 fruit per 20 m2). Note that the shrub density model above was 



used as one of the predictors of fruit density so this model required both of the prior models for 

final map predictions. 

 

Supporting analyses: null models, top–down vs bottom–up, scale and NDVI 
Null models 

Null models used in the main text included both a statistical null model with an intercept term and 

an ecological null model that included both road density and the ‘nuisance’ parameter of session 

number. The ecological null model therefore accounted for possible top–down effects on local 

abundance of grizzly bears via human activity associated with roads that reduce survival (Boulanger 

and Stenhouse 2015) and seasonal changes in detectability across sessions. Here we illustrate all 

combinations of null models in an AIC table demonstrating that the most supported model includes 

both road density (a priori top–down surrogate) and session number (Table A8). Note, however, 

that most of the support is with road density with the nuisance parameter of session being rather 

minor overall.  

 

Separating bottom–up and top–down hypotheses 

The main question addressed in the text is whether complementary or single food resource items 

better correlate with local patterns of grizzly bear abundance. In the main text all of the non-null 

models were fit using the most supported ecological null model from Table A8 which included the 

nuisance parameter of session and road density as a top–down surrogate variable to account for the 

inverse relationship between road density and survival rates in the study area (Boulanger and 

Stenhouse 2015). Here we separate all the bottom–up (food resource) from top–down (road density) 

hypotheses (see Table A9 for model/hypothesis description), while accounting for the nuisance 

parameter of ‘session’ to demonstrate that the ranking of complementary versus single food 

resource items is the same whether adding the top–down factor of roads or not (Table A10). 

Inferences are therefore robust to inclusion or separation of top-down factors with a small 

improvement in support for a model that includes the top-down factor (road density). When 

isolating the bottom–up factors, the complementary additive hypothesis is the most supported 

hypothesis. 

 

Buffaloberry food supply measured at larger spatial scales 

In the manuscript, road density and ungulates food supply were measured within moving window 

sizes of 7.44 km radius matching the average daily movement rate of solitary female and sub-adult 

grizzly bears during hyperphagia (Boulanger et al. 2013), while buffaloberry was measured at a 

1.69 km radius matching detection scales around bait sites (Boulanger et al. 2004). Here we analyze 



local bear abundance using the same larger (7.44 km radius) spatial scale for all variables. Model 

results demonstrate that hypotheses were ranked the same between scales (Table 2 in text and Table 

A11 below). Moreover, the top-ranked model using the 1.69 km scale for buffaloberry had an AIC 

of 714.05 (Table 2), while the same model at a 7.44 km scale was ranked at 718.13 (Table A11) for 

a ΔAIC of 4.08. This translated into an Akaike weight for the 1.69 km scale of 0.885 and the 

Akaike weight of the 7.44 km scale of 0.115 with an evidence ratio supporting the 1.69 km scale 

over that of the 7.44 km scale of 7.7 times.   

 

Vegetation productivity (NDVI) and local bear abundance 

Although not a formal part of the hypotheses being tested in the main text, surrogates of vegetation 

productivity, such as NDVI (natural difference vegetation index) and greenness, have often used to 

assess grizzly bear habitat and population density (Mace et al. 1999, Nielsen et al. 2002, Mowat et 

al. 2013). To ensure no strong correlations between metrics of vegetation productivity and key 

hypothesized variables of ungulate and buffaloberry food supply, we correlated maximum NDVI 

values for a representative year (2006) from MODIS satellite data (US Geological Survey 2015) 

with ungulate and buffaloberry food supply. This included correlations at three scales for NDVI: 

250 m pixel and mean NDVI at 1.69 km mean and 7.44 km radii matching the scale of summarized 

buffaloberry and ungulate food supply.  

Overall, correlations between NDVI and modelled food supply were neutral (NDVI1.69 km 

and Buffaloberry1.69 km  r = 0.08) to negative (NDVI7.44 km and Ungulates7.44 km  r = –0.55) in 

association (Fig. A2). As scale the scale at which NDVI was measured increased to the 7.44 km 

radius scale, the correlation with buffaloberry and ungulates became more negative. This 

demonstrates the general inverse relationship between key food resources considered in the paper 

(ungulates and buffaloberry) and vegetation productivity.  

Baseline ecological models (session and road density) fit with the most supported NDVI 

variable (7.44 km radius) demonstrated a negative correlation between NDVI and local bear 

abundance (β = –0.00071, SE = 0.00017; e^βStdX = 0.639), opposite to what would be expected if 

vegetation productivity was most correlated to local patterns in grizzly bear abundance. Likewise, 

model support from AIC comparisons was weak with an AIC of 740.49 and a ΔAIC of 26.44 units 

from the most supported model (AIC = 714.05) which ignored vegetation productivity, but used 

instead ungulate and buffaloberry food supply. This suggests that vegetation productivity – as 

measured by maximum NDVI – was a poor predictor of local patterns in grizzly bear abundance, 

despite its widespread use in the literature. Use of metrics like NDVI likely reflects the ease at 

which these data are available, not the direct measure of resources that influence grizzly bear 

populations (at least in this study region). 
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Tables A1. Variables used to predict ungulate abundance within the Yellowhead bear management 

unit in west-central, Alberta, Canada. 

Class Type Description Code 
Landcover   

 
upland tree >5% tree cover by crown closure; mesic/dry moisture regime UT 

 
wetland tree >5% tree cover by crown closure; wet/aquatic moisture regime WT 

 
upland herb >5% herbaceous cover; mesic/dry moisture regime UH 

 
wetland herb >5% herbaceous cover; wet/aquatic moisture regime WH 

 
shrub >5% shrub cover; any moisture regime SHR 

 
herb/shrub UH+WH+SHR SHRHRB 

 
water <5% vegetated; aquatic moisture regime WAT 

 
barren <5% vegetated; mesic or dry moisture regime BAR 

  agriculture Agricultural areas AGR 
Anthropogenic   

 
well-sites Buffered by 70m ANT 

 
pipelines Buffered by 20m 

 
 

powerlines Buffered by 30m 
 

 
roads Buffered by 30m 

 
 

railway Buffered by 30m 
 

 
cutblocks Forestry cutblocks BLK 

 
coal mine Reclaimed Cardinal/Gregg River open pit coal mine Cmine 

  
Reclaimed Coal Valley open pit coal mine Rmine 

  
Presence/absence of Cmine Cmine1 

    Presence/absence of Rmine Rmine1 
Forest attribute   

 
conifer Conifer dominated (>50% conifer) CON 

 
deciduous Deciduous dominated (≤50% conifer) DEC 

 
canopy closure Average canopy closure (non-forested = nodata) CCx 

  
Average canopy closure (non-forested = zero) CCndx 

  
Standard deviations in canopy closure (non-forested = nodata) CCsd 

  
Standard deviations in closure (non-forested = zero) CCndsd 

 
stand age Average stand age (non-forested = nodata) AGEx 

  
Average stand age (non-forested = zero) AGEndx 

  
Standard deviations in stand age (non-forested = nodata) AGEsd 

    Standard deviations in stand age (non-forested = zero) AGEndsd 
Topography   

 
slope Average slope SLPx 

  
Standard deviation of slope SLPsd 

 
escape terrain Amount of slopes >27°; patch size >7000m2 ESCP1 

  
Amount of slopes >27° ESCP01 

  
Presence/absence of ESCP1 ESCP1_1 

  
Presence/absence of ESCP01 ESCP01_1 

  
Average distance to slopes >27°; patch size >7000m2 ESCPx1 

  
Average distance to slopes >27° ESCPx01 

 
aspect Average aspect scaled (–180, +180) ASPx 



  
Standard deviation of aspect ASPsd 

 
elevation Average elevation ELEVx 

    Standard deviation of elevation ELEVsd 
Water   

 
small rivers Stream length (Strahler order 1 and 2) ORD0 

 
large rivers Stream length (Strahler order 3–5) ORD1 

 
rivers ORD0 + ORD01 ORD01 

  waterbodies Naturally occuring wetlands and lakes WATB 
 

  



Table A2. Model averaged regression coefficients explaining variation in ungulate abundance as 

function of predictor variables. Coefficients were obtained by fitting generalized linear models and 

weighting predictions by Akaike weights (wi) across the full set of candidate models. 

Variable 
Moose -  

male 
Moose -  
female Elk 

White-tailed  
deer 

Mule  
deer Sheep 

AREAc 0.27 
 

1.37 
   WT 

 
1.38 

    CON 
 

–0.34 
    DEC 1.18 0.15 
 

5.46 
  AGEndx 

  
0.03 

   AGEsd 
 

–0.02 
    CCx 0.02 

     CCndsd 
    

0.06 
 ELEVsd 

  
   0.47^-4 0.02 

  SLPsd 0.08 
     ESCPx01 0.45^-4 0.49^-6 

    ESCPx012 –0.56^-11 –0.37^-11 
    ORD01 

 
–0.53^-7 

    BLK 
  

–0.88 –0.92 
  Cmine 

  
1.65 

  
11.61 

Rmine 
   

1.29 0.91 
 Constant –0.71 1.24 –0.69 0.44 0.39 2.74 

 

 

  



Table A3. Hypothesized environmental factors (themes), variables, and variable abbreviations of 

univariate, quadratic (^2) and interaction terms used to statistically model occupancy, shrub density, 

and fruit density of Canada buffaloberry Shepherdia canadensis at sampling plots in west-central, 

Alberta, Canada. 

Hypothesized factor (theme) Variable 

Variable 

abbreviation 

Climate mean annual temperature MAT (^2) 

Climate growing season precipitation GSP (^2) 

Climate end of frost free period* EFFP* 

Soils soil ph pHca (^2) 

Soils sand content TSand 

Canopy cover — sunlight canopy cover Canopy 

Terrain — sunlight solar radiation Solar 

Terrain wetness compound topographic index CTI (^2) 

Land cover — forest habitat conifer forest Conifer 

Land cover — forest habitat mixedwood forest Mixedwood 

Land cover — forest habitat deciduous forest Deciduous 

Land cover — forest habitat bog/fen Treed wetland 

Land cover — non-forest habitat shrub Shrub 

Land cover — non-forest habitat herbaceous Herb 

Climate interaction interaction MAT:GSP 

Canopy cover-terrain interaction interaction CTI:Canopy 

Sunlight-terrain interaction interaction CTI:Solar 

Canopy cover-sunlight interaction interaction Canopy:Solar 
* EFFP considered as an alternate to MAT in shrub and fruit density models. 

  



Table A4. Ranking of candidate models predicting Canada buffaloberry Shepherdia canadensis 

occupancy at field plots in west-central Alberta, Canada.  

Model 

ID Model structure AIC ΔAIC Model rank 

12 land cover + climate + soil + sunlight1 2244.1 0 1 

13 land cover + climate + soil + terrain 2246.3 2.2 2 

1 global 2249.3 5.2 3 

9 land cover + climate + soil 2303.4 59.3 4 

10 land cover + climate + sunlight 2322.5 78.4 5 

11 land cover + climate + terrain 2322.7 78.6 6 

14 land cover + climate + sunlight + terrain 2326 81.9 7 

8 land cover + climate 2388 143.9 8 

2 soils and terrain global 2389.4 145.3 9 

3 climate global 2427.6 183.5 10 

7 soils global 2434.6 190.5 11 

4 sunlight global 2555.4 311.3 12 

5 land cover global 2562.8 318.7 13 

6 terrain global 2604.8 360.7 14 

1Note that the ‘sunlight’ factor includes both canopy cover and terrain-derived solar radiation. This differs 

from the ‘terrain’ factor in including all terrain variables (solar radiation and terrain wetness).  



Table A5. Logistic regression coefficients predicting the occurrence of Canada buffaloberry 

Shepherdia canadensis in field plots in west-central Alberta, Canada. 

 

Variables Coefficient (β) 

Intercept (constant) –26.59 

Landcover 

 

 

conifer 0.746 

 

mixedwood 1.157 

 

deciduous 0.811 

 

treed wetland –0.204 

 

shrub 0.460 

 

herb 0.062 

Climate 

 

 

MAT –4.518 

 

MAT^2 0.328 

 

GSP 0.169 

 

GSP^2 –0.000229 

Soils 

 

 

Soil pH –4.192 

 

Soil pH^2 0.388 

 

Soil (% Sand) 0.0173 

Forest stand condition 

 

 

Canopy 0.00914 

Terrain 

 

 

Solar 6.79 

Interactions 

 

 

MAT:GSP 0.0100 

  Canopy:Solar –0.0112 

 

  



Table A6. Quantile regression coefficients (β) used to predict Canada buffaloberry shrub density 

(log transformed) within 20 m2 plots based on environmental factors and survey design covariates. 

Standard error (SE) and significance (pP) of parameters provided. 

Variable β SE p 

EFFP (end of frost free period) –0.067 0.027 0.015 

plot type (bear use site) 0.539 0.149 <0.001 

Year 2002 (vs 2001) –0.480 0.158 0.003 

Year 2003 (vs 2001) –0.547 0.183 0.003 

Constant 18.860 6.795 0.006 

 

  



Table A7. Quantile regression coefficients (β) used to predict Canada buffaloberry (SHCA) fruit 

density (log10 transformed + 1) within 20 m2 plots based on environmental factors, shrub density 

(SHCA), and survey design covariates. Standard error (SE) and significance (p) of parameters 

provided. 

Variable β SE p 

log(SHCA density) 0.692 0.080 <0.001 

Canopy 0.028 0.011 0.009 

Canopy^2 –0.000361 0.000129 0.005 

MAT 1.731 0.522 0.001 

plot type (used) 0.670 0.330 0.043 

Year 2002 0.345 0.299 0.251 

Year 2003 –0.611 0.810 0.451 

plot type (used) × 2002 –0.928 0.368 0.012 

plot type (used) × 2003 –0.353 0.841 0.675 

week number 1.393 0.289 <0.001 

week number^2 –0.020 0.004 <0.001 

week number × MAT –0.059 0.015 <0.001 

Constant –24.195 4.793 <0.001 

 

 

  



Table A8.	Comparison of null models predicting local abundance of grizzly bears in west-central 

Alberta, Canada. Model selection results listing model log likelihoods (LL), model complexity (K), 

Akaike’s information criteria (AIC), change in AIC (ΔAIC) and overall support (weights) of the 

models given data and models tested (wi AIC). Models are rank ordered from most to least 

supported. The top ecological null model and the statistical null model were used in the main text.   

Null model 
 

Model LL 
 

K 
 

AIC 
 

Δ AIC 
 

wi AIC 
 

Session + Roads 
 

–376.84 
 

5 
 

763.68 
 

0.00 
 

0.979 
 

Roads 
 

–381.67 
 

4 
 

771.35 
 

7.67 
 

0.021 
 

Session 
 

–402.71 
 

4 
 

813.43 
 

49.75 
 

0.000 
 

Intercept 
 

–407.02 
 

3 
 

820.04 
 

56.36 
 

0.000 
 

	
	



Table A9. Set of hypotheses tested, model structure, and descriptions as it relates to testing top–down (mortality) and bottom–up (food 

resource supply) control in local patterns of grizzly bear abundance. 

Hypothesis Model structure Description 

Null Null No landscape pattern in bear abundance (mean count across study 
area) 

   
Top–down Null landscape  

(session + road density) 
Bear abundance affected by session + local patterns in mortality 
risk/survival (top–down regulation) 

   
Bottom–up  
(single resource – fruit) 

Session + Fruit 
 

Bear abundance affected by session + bottom–up regulation due to 
variations in fruit abundance (1.69 km radius) 

   
Bottom–up  
(single resource – meat) 

Session + Meat 
 

Bear abundance affected by session + bottom–up regulation due to 
variations in ungulate abundance (7.44 km radius) 

   
Bottom–up (complementary 
additive resources) Session + Meat + Fruit Bear abundance affected by session + bottom–up regulation of the 

combined additive effects of ungulates and fruit   
   
Bottom–up (complementary 
interactive resources) 

Session + Meat + Fruit +  
Meat × Fruit 

Bear abundance affected by session + bottom–up regulation of the 
combined interactive effects of ungulates and fruit 

   
Top–down + Bottom–up  
(single resource – fruit) Null landscape + Fruit Bear abundance affected by bottom–up regulation due to local 

variation in fruit abundance  + Top–down effects 
   
Top–down + Bottom–up 
(single resource – meat) Null landscape + Meat Bear abundance affected by bottom-up regulation due to local 

variation in meat (ungulate) abundance + Top–down effects 
   
Top–down + Bottom–up 
(complementary additive) 

Null landscape +  
Fruit + Meat 

Bear abundance affected by the combined effect of fruit and meat 
(additive effect) + Top–down effects 

   
Top–down + Bottom–up 
(complementary interactive) 

Null landscape + Fruit +  
Meat + Fruit × Meat 

Bear abundance affected by the combined effect of fruit and meat 
(multiplicative effect) + Top–down effects 



Table A10. Comparison of candidate models explaining local abundance of grizzly bears 

separating bottom–up and top–down (landscape-null model) factors. All models, except the null 

model, have session number as a ‘nuisance’ parameter. Model selection results listing model log 

likelihoods (LL), model complexity (K), Akaike’s information criteria (AIC), change in AIC 

(ΔAIC) and overall support (weights) of the models given data and models tested (wi AIC).  

Models are rank ordered from most to least supported. Bottom-up complementary additive refers 

to Meat + Fruit, while bottom-up complementary interactive refers to Meat + Fruit + Meat × 

Fruit. Note that ranking of top models for complementary versus single resource hypotheses are 

the same. 

Hypothesis (model) Model LL K AIC Δ AIC wi AIC 

Top–down + Bottom–up (complementary 
additive) –350.03 7 714.05 0.00 0.474 

Bottom–up (complementary additive) –351.67 6 715.33 1.28 0.250 

Top–down + Bottom–up (complementary 
interactive) –350.00 8 716.00 1.95 0.179 

Bottom–up (complementary interactive) –351.67 7 717.33 3.28 0.092 

Top–down + Bottom–up (single resource of 
meat) –355.49 6 722.97 8.92 0.005 

Bottom–up (single resource of meat) –361.26 5 732.52 18.47 0.000 

Top–down + Bottom–up (single resource of 
fruit) –368.88 6 749.77 35.71 0.000 

Top–down –376.84 5 763.68 49.63 0.000 

Bottom–up (single resource of fruit) –380.97 5 771.93 57.88 0.000 

Null model (mean count of bears at all sites) –407.02 3 820.04 105.99 0.000 

 

  



Table A11. AIC table for main hypotheses (matching Table 2 in text) but measuring buffaloberry 

food supply at 7.44 km radius. Note rank order of hypotheses does not change. 

Hypothesis (model) Model LL K AIC Δ AIC wi AIC 

Top–down + Bottom–up  
(complementary additive) –352.066 7 718.13 0.00 0.551 

Top–down + Bottom–up  
(complementary interactive) –351.389 8 718.78 0.65 0.399 

Top–down + Bottom–up  
(single resource of meat) –355.49 6 722.97 4.84 0.049 

Top–down + Bottom–up  
(single resource of fruit) –370.942 6 753.88 35.75 0.000 

Top–down –376.84 5 763.68 45.55 0.000 

Null model  
(mean count of bears at all sites) –407.02 3 820.04 101.91 0.000 

 

  



 

Figure A1. Map depicting ungulate survey areas in relation to the Yellowhead bear management 

unit study area boundary.  

  



 

 

Figure A2. Pearson correlation matrix of vegetation productivity (maximum NDVI), 

buffaloberry food supply (log10[kcal]) and ungulate food supply (log10[kcal]). NDVI was 

measured at 3 scales: 250 m pixel, 1.69 km radius moving window, and 7.44 km radius moving 

window. Buffaloberry and ungulate food supply was measured only at the two larger scales. The 

yellow highlighted section illustrates neutral to moderately negative correlations between 

vegetation productivity and buffaloberry or ungulate food supply. 

NDVI-250 m 
(pixel)

NDVI-1.69 
km

NDVI-7.44 
km

Buffaloberry-
1.69 km

Buffaloberry-
7.44 km

Ungulates-
1.69 km

Ungulates-
7.44 km

NDVI-250 m (pixel) 1.00
NDVI-1.69 km 0.39 1.00
NDVI-7.44 km 0.14 0.69 1.00
Buffaloberry-1.69 km -0.01 0.08 -0.12 1.00
Buffaloberry-7.44 km -0.07 -0.05 -0.18 0.81 1.00
Ungulates-1.69 km -0.07 -0.28 -0.55 0.39 0.43 1.00
Ungulates-7.44 km -0.05 -0.28 -0.55 0.32 0.38 0.90 1.00


